• Title/Summary/Keyword: Ammonia conversion

Search Result 216, Processing Time 0.02 seconds

Ammonification and NH3 emission in the Soil Amended with Different Animal Manures

  • Wang, Xin-Lei;Zhang, Qian;Park, Sang-Hyun;Lee, Bok-Rye;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.56-60
    • /
    • 2017
  • Mineralization is an important biological process for conversion of organic nitrogen (N) to inorganic N which can be used by plants directly. To investigate the effect of different manures on soil mineralization, the soil amended with cattle (CtM), goat (GM), chicken manure (ChM) and pig slurry (PS) were incubated under in vitro condition and ammonium N ($NH_4{^+}-N$), ammonification rate and ammonia emission were determined for eighty-four days. $NH_4{^+}-N$ was the highest in PS-amended soil for the whole experimental period. $NH_4{^+}-N$ in PS-amended soil was gradually decreased until day 84, whereas it was rapidly decreased for the first 14 days and then slightly increased until 84 days in ChM-, CtM- and GM-amended soil. The ammonification rate showed negative value for the first 14 days in all treatments. From day 14, ammonification rate started to increase in CtM- and ChM-amended soil, whereas it was maintained in GM- and PS-amended soil until day 84. The daily ammonia emission was the highest in PS-amended soil ($41mg\;kg^{-1}d^{-1}$), followed by CtM-, ChM-, and GM-amended soil at day 1. It was gradually decreased until day 84 in all treatments. The total $NH_3$ emission was the highest in PS-amended soil with $0.6mg\;kg^{-1}$ for 84 days, while less than $0.1mg\;kg^{-1}$ in three other plots. These results indicate that different manures showed different soil ammonification rate and $NH_3$ emission.

Effect of addition of a catalystic layer on Denitrification System efficiency in a 500 MW Coal-fired Power Plant (500 MW 석탄화력발전소 촉매단추가에 따른 탈질설비 효율에 미치는 영향)

  • Lee, Sang Soo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • The government has recently come up with a policy to tighten regulations on air pollutant emissions due to public concerns over the emission of pollutants such as fine dust. The coal-fired power plant is speeding up the improvement of the performance of environmental facilities, and this paper deals with the cases of performance improvement by adding a catalyst to the 500 MW standard coal-fired power DeNox system, and examines the change in the performance factors according to the addition of catalysts and the efficiency of NOx removal. The DeNOx efficiency before and after improvement increased from 80% to 88%, and the conversion rate of SO2/SO3, ammonia slip which are performance factors satisfied the design assurance value, but exceeded the design assurance value for differential pressure. At the same time, the ammonia slip concentration and differential pressure items increased as the NOx removal efficiency increased, resulting in the need for management and improvement.

Characterization of Thermostable Tyrosine Phenol-Lyase from an Obligatory Symbiotic Thermophile, Symbiobacterium sp. SC-1

  • Lee, Seung-Goo;Hong, Seung-Pyo;Kwak, Mi-Sun;Esaki, Nobuyoshi;Sung, Moon-Hee
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.480-485
    • /
    • 1999
  • Tyrosine phenol-lyase of thermophilic Symbiobacterium sp. SC-1, which is obligately and symbiotically dependent on thermophilic Bacillus sp. SK-1, was purified and characterized. The enzyme is composed of four identical subunits and contains approximately 1 mol of pyridoxal 5'-phosphate (PLP) per mol subunit as a cofactor. The enzyme showed absorption maxima at 330 and 420 nm, and lost this absorption profile by treatment with phenylhydrazine. The apparent dissociation constsnt, $K'_D$, for PLP was determined with the apoenzyme to be about $1.2\;{\mu}M$. The isoelectric point was 4.9. The optimal temperature and pH for the $\alpha,\beta$-elimination of L-tyrosine were found to be $80^{\circ}C$ and pH 8.0, respectively. The substrate specificity of the enzyme was very broad: L-amino acids including L-tyrosine, 3,4-dihydroxyphenyl-L-alanine (L-DOPA), L-cysteine, L-serine, S-methyl-L-cysteine, $\beta$-chloro-L-alanine, and S-(o-nitrophenyl)-L-cysteine all served as substrates. D-Tyrosine and D-serine were also decomposed into pyruvic acid and ammonia at rates of 7% and 31% relative to their corresponding L-enantiomers, respectively. D-Alanine, which was inert as a substrate in a, $\beta$-elimination, was the only D-amino acid racemized by the enzyme. The $K_m$ values for L-tyrosine, L-DOPA, S-(o-nitrophenyl)-L-cysteine, $\beta$-chloro-L-alanine, and S-methyl-L-cysteine were 0.19, 9.9, 0.36, 12, and 5.5 mM, respectively.

  • PDF

The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides

  • Schreinemachers, Christian;Leinders, Gregory;Modolo, Giuseppe;Verwerft, Marc;Binnemans, Koen;Cardinaels, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1013-1021
    • /
    • 2020
  • A combination of simultaneous thermal analysis, evolved gas analysis and non-ambient XRD techniques was used to characterise and investigate the conversion reactions of ammonium uranates into uranium oxides. Two solid phases of the ternary system NH3 - UO3 - H2O were synthesised under specified conditions. Microspheres prepared by the sol-gel method via internal gelation were identified as 3UO3·2NH3·4H2O, whereas the product of a typical ammonium diuranate precipitation reaction was associated to the composition 3UO3·NH3·5H2O. The thermal decomposition profile of both compounds in air feature distinct reaction steps towards the conversion to U3O8, owing to the successive release of water and ammonia molecules. Both compounds are converted into α-U3O8 above 550 ℃, but the crystallographic transition occurs differently. In compound 3UO3·NH3·5H2O (ADU) the transformation occurs via the crystalline β-UO3 phase, whereas in compound 3UO3·2NH3·4H2O (microspheres) an amorphous UO3 intermediate was observed. The new insights obtained on these uranate systems improve the information base for designing and synthesising minor actinide-containing target materials in future applications.

Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia (황산과 암모니아를 이용한 목질계 바이오매스의 전처리 공정에 따른 당화 및 발효공정 전략)

  • Cayetano, Roent Dune;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • This is to study the effects of various pretreatment methods of agricultural residue, corn stover, and to compare the feature and pros and cons of each method including dilute sulfuric acid (DSA), soaking in aqueous ammonia (SAA), and ammonia recycle percolation (ARP). In order to convert corn stover to ethanol, various pretreatments followed by simultaneous saccharification and co-fermentation (SSCF) were tested and evaluated in terms of ethanol yield. With 3%, w/w of glucan loading using ARP-, DSA-, and SAA-treated solids, SSCFs using recombinant E. coli strain (ATCC$^{(R)}$ 55124) with commercial enzymes (15 FPU of Spezyme CP/g-glucan and 30 CBU/g-glucan enzyme loading) were tested. In the SSCF tests, 87, 90, and 78% of theoretical maximum ethanol yield were observed using ARP-, DSA-, and SAA-treated solids, respectively, which were 69, 58, and 74% on the basis of total carbohydrates (glucan + xylan) in the untreated corn stover. Ethanol yield of SAA-treated solid was higher than those of ARP- and DSA-treated solids. In addition, SSCF test using treated solids plus pretreated hydrolysate indicated that the DSA-treated hydrolysate showed the strongest inhibition effect on the KO11 strain, whereas the ARP-treated hydrolysate was found to have the second strongest inhibition effect. Bioconversion scheme using SAA pretreatment and SSCF can make the downstream process simple, which is suggested to produce ethanol economically because utilization of hemicellulose in the hydrolysate is not necessary.

Effects of the Different Level of Dissolved Oxygen, Ammonia and Hydrogen Sulfide on Survival and Growth of juvenile, Fenneropenaeus chinensis (대하, Fenneropenaeus chinensis 치하의 생존 및 성장에 미치는 빈산소, 암모니아 및 황화수소의 영향)

  • 지정훈;강주찬
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.235-239
    • /
    • 2004
  • Experiments were carried out to examine the effects of the different levels of oxygen, ammonia and hydrogen sulfide on survival, specific growth rate (SGR) and feed conversion ratio (FCR) of juvenile shrimp, Fenneropenaeus chinensis. Survival of the shrimp exposed to the hypoxia with $\leq$2.5 mg/L dissolved oxygen for 24 days were significantly affected. SGR and FCR of the shrimp exposed to$\leq$3.0 mg/L dissolved oxygen were significantly reduced than those of shrimp reared at 6.8 mg/L dissolved oxygen concentration. Survival of the shrimp exposed to $\geq$2.0 mg/L of ammonia levels for 24 days was significantly affected. Moreover, compared to the control group significant decrease of SGR and FCR of the shrimp has been observed with $\geq$1.0 mg/L and $\geq$0.5 mg/L of ammonia concentrations. In case of hydrogen sulfide, $\geq$0.5 mg/L was the critical level showed its significant negative effect on survival rate of shrimp exposed for 24 days. While, the group exposed with $\geq$0.07 mg/L and $\geq$0.05 mg/L hydrogen sulfide levels had a lower SGR and FCR values than did the control group in the same stipulated time of exposure.

Removal Technology of NOx Using V2O5/TiO2 Catalyst Impregnated Ceramic Candle Filters (바나디아 촉매담지 세라믹 캔들필터를 이용한 질소산화물 제거기술)

  • Lee, Dong-Sub;Park, Jin-Sick
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1077-1083
    • /
    • 2007
  • [ $V_2O_5/TiO_2$ ] catalyst impregnated ceramic candle filters are in principle, capable of performing shallow-bed dust filtration plus a catalytic reaction, promoted by a catalytic deposited in their inner structure. Pilot-scale $V_2O_5/TiO_2$ catalyst impregnated ceramic candle filters were prepared, characterized and tested for their activity towards the SCR reaction. The effect on NO conversion of operating temperature, gas hourly space velocity, amount of deposited catalyst, pressure drops and long-term experiment (life of catalytic filter) was determined. The following effects of $V_2O_5/TiO_2$ catalyst impregnated ceramic candle filters in SCR reaction are observed: (1) It increases the activity and widens the temperature window for SCR. (2) When the content of $V_2O_5$ catalyst increases further from 3 to 9wt.%, activity of NO increases. (3) NO conversion at first increases with temperature and then decreases at high temperatures (above $400^{\circ} over), possibly due to the occurrence of the ammonia oxidation reaction.

Strength and conversion characteristics of DeNOx catalysts with the addition of dispersion agent (분산제 첨가에 따른 탈질촉매의 강도세기 및 전환특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6575-6580
    • /
    • 2013
  • Various modified SCR catalysts were prepared and tested to improve the strength of catalysts for use under severe conditions. The SCR catalysts were modified with a binder and dispersion agent, and tested at the fixed bed reactor. FT-IR and $H_2$-TPR were used to analyze the degree of hydrogen use and ammonia adsorption by the modified catalysts. In the case of the SCR catalysts coated with 2.3g of the binder, 4.7g of ethanol, and 0.1g of dispersion agent, the strength of catalyst was increased by approximately 12%. On the other hand, despite the enhancement of strength, the activities of the SCR catalysts were decreased by 2-10%. When the mixed solution composed of binder, dispersion agent and $SiO_2$ solution was precipitated on the catalyst, the $NO_x$ conversion of the catalyst was decreased slightly. The Bronsted acid site and Lewis acid site worked as the activators for the SCR reaction, and were decreased by $SiO_2$.

BODY WEIGHT GAIN, FEED CONVERSION AND FEED COST OF KOREAN NATIVE GOATS FED CORN-MANURE SILAGES

  • Kim, J.H.;Ko, Y.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.5
    • /
    • pp.427-431
    • /
    • 1995
  • This study was carried out to investigatigate feed cost of com-manure silage and growth performance of Korean native goats which was fed com-manure silage. The average weight about 11.6 kg of twenty one Korean native male goats (4 months used to determine the effect of the feeding trial. The goats were individually reared in metabolism cages and fed diet daily of 2% of the body weight on the dry matter basis. The treatments were divided into whole crop com silage(CS silage), whole crop com ensiled with cage layer manure (CLM; Com-manure silage or MS silage) and whole crop com silage supplemented with urea at feeding time (US silage). The content of crude protein, lactic acid and the ratio of ammonia nitrogen to total nitrogen ($NH_3-N/Total$ N) in MS silage were increased from 7.7 to 14.9%, 5.7 to 7.5% and 8.2 to 16.6%, and the differences were significantly (p < 0.05) different in all observations. Total body weight gain of those goats for 90 days was 6.0 kg (66.7 g/day; MS silage 4.3 kg (47.8 g/day; US silage) and 3.9 kg (43.4 g/day; CS silage), and feed conversion of MS silage (5.98) for 90 days was increased by far the best in the other groups and decreased about 30% in proportion to CS silage. Feed cost per 1 kg MS silage (1,606 won) was the lowest (p < 0.05) in the body weight gain and cut down expenses than fed CS silage by 37% of feed cost.

An Experimental Study on Optimization of $NH_3$ Injection for the Selective Catalytic Reduction(SCR) System (선택적 환원 촉매(SCR)에서 암모니아($NH_3$) 분사량 최적화에 대한 실험적 연구)

  • Jang, Ik-Kyoo;Yoon, Yu-Bin;Park, Young-Joon;Lee, Seang-Wock;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2874-2879
    • /
    • 2008
  • The Selective catalytic reduction(SCR) system is a highly-effective device of $NO_x$ reduction for diesel engines. Generally, the ammonia($NH_3$) generated from a liquid urea-water solution is used for the reductant. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency becomes lower, due to temperature window. And space velocity also affects to $NO_x$ conversion efficiency. This paper reviews a laboratory study to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the SCR system. The maximum conversion efficiency of $NO_x$ was indicated when the $NH_3$ to $NO_x$ ratio was 1.2 and the space velocity was $60,000\;h^{-1}$. The results of this paper contribute to improve overall $NO_x$ reduction efficiency and $NH_3$ slip.

  • PDF