• Title/Summary/Keyword: Ammonia Oxidation

Search Result 184, Processing Time 0.021 seconds

Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts (망간촉매하에서 암모니아의 선택적 산화반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig;Cha, Wang Seog
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.498-505
    • /
    • 2008
  • The selective catalytic oxidation of ammonia was carried out in the presence of natural manganese ore (NMO) and manganese as catalysts using a homemade 1/4" reactor at $10,000hr^{-1}$ of space velocity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. The manganese catalyst resulted in a substantial ammonia conversion, with adsorption activation energies of oxygen and ammonia of 10.5 and 22.7 kcal/mol, respectively. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported manganese catalyst was applied. Increasing the manganese weight percent by 15 wt% increased the lower temperature activity, but 20 wt% of manganese had an adverse effect on the reaction results. An important finding of the study was that the manganese catalyst benefits from a strong sulfur tolerance in the conversion of ammonia to nitrogen.

DESTRUCTION OF HUMIC MATTERS AND AMMONIA IN THE LANDFILL LEACHATE BY SUPERCRITICAL WATER OXIDATION

  • Kim, Y.K.;Ahn, J.S.;Leung, W.
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.311-317
    • /
    • 2006
  • Feasibility of destroying synthetic and actual leachate containing humic acids and ammonia compounds by supercritical water oxidation (SCWO) was evaluated. In this study, destruction efficiencies of humic acids and ammonia respectively were investigated at various reaction temperatures and residence times under pressure a supercritical pressure (280 atm). To lower reaction temperature, chemical oxidants were used. The experiment was carried out in a cylindrical batch reactor made of Hastelloy C-276 that can withstand high temperature and pressure. Concentrations of humic acids and ammonia were measured using a $COD_{Cr}$ method and an ammonia selective electrode, respectively. The optimal destructive condition of humic acids in the presence of stoichiometric oxygen(air) was 3 min at $380^{\circ}C$, but the temperature could be lowered to subcritical region ($360^{\circ}C$) along with $H_2O_2$ as an oxidant. For ammonia, the optimal destructive condition with air was 5 min at $660^{\circ}C$, but it was possible to operate the process for 3 minutes at $550^{\circ}C$ or 2 min at $600^{\circ}C$ along with $H_2O_2$ as an oxidant. At 2 min and $550^{\circ}C$ along with $H_2O_2$ as an oxidant, humic and ammonia compounds in the actual leachate were easily destructed and the effluent quality met the Korea Standard Leachate Quality.

Shock Tube and Modeling Study of the Formation and the Reduction of Nitrogen Oxides; Ammonia Oxidation (질소산화물의 생성과 제어반응에 관한 충격관 실험 및 모델 연구 ; 암모니아 연소)

  • Shin, Kuan-Soo;Cho, Hye-Yun;Shim, Seung-Bo;Jee, Sung-Bae
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.59-65
    • /
    • 1999
  • Ignition of $NH_3-O_2-Ar$ mixtures have been studied behind reflected shock waves over the temperature range of 1600-2300 K and the pressures in the range of 1.1-1.6 atm. The pressure profile and the radiation emitted behind the shock waves have been monitored to give empirical correlations between ignition delay times and the mixture concentrations with the experimental conditions. On the basis of this data, several kinetic mechanisms proposed for ammonia oxidation at high temperatures have been tested. The ignition delay times obtained from the mechanism proposed by Miller and Smook were in good agreement with our experimental results.

  • PDF

Applicable Feasibility of Fenton Oxidation and Zeolite Ion Exchange Processes for Removal of Non-Biodegradable Matters and Ammonia in Livestock Wastewater (축산폐수 중의 난분해성 물질 및 암모니아 제거를 위한 Fenton 산화와 Zeolite 이온교환 공정의 적용 가능성)

  • Cho, Chang-Woo;Kim, Byoung-Young;Chae, Soo-Choen;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • Livestock wastewater containing concentrated organic matters and nutrients has been known as one of the major pollutants. It is difficult to apply the conventional activated sludge process to treat livestock wastewater because of high Non-biodegradable (NBD) matter and ammonia. The objectives of this study are to remove NBD matters including aromatic compounds and ammonia in livestock wastewater using Coagulation-Fenton oxidation-Zeolite (CFZ) processes and ascertain applicable feasibility in the field through pilot plant experiment. NBD matters and color remained in the treated water were removed over 92% by Fenton oxidation as the second treatment process. Ammonia was removed by over 99.5% in the zeolite ion exchange process as the last treatment method. From $UV_{254}$, $E_2/E_3$ ratio and GC/MS analyses of treated water at each process, the aromatic compound was converted to aliphatic and aromaticity was decreased. In pilot scale test, organics and ammonia removal efficiencies were not much different from the result of lab-scale test at various operation conditions. Furthermore, reaction time and dosage of Fenton reagent in pilot scale experiment reduced by 40 min and 50% rather than in lab-scale test. $BOD_5$, $COD_{Mn}$, SS, T-N and T-P of treated water in the pilot-scale experiment also met the effluent standards.

The Efficiency of Fe Removal Rate from Gold Ore in the Oxidation Zone by Ammonia Leaching (암모니아 용출에 의한 산화대 금 광석으로부터 Fe 제거 효율에 관한 연구)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.113-122
    • /
    • 2016
  • This study aims to improve the recovery of gold and silver by removing hematite from gold ore of an oxidation zone with ammonia solution. Quartz, hematite and muscovite were present in the oxidation zone, while hematite was hydrogenous. As a result of performing an ammonia leaching test on variables, it is found that the maximum Fe leaching parameter was $-45{\mu}m$ particle size, 1.0 M sulfuric acid concentration, 5.0 g/l ammonium sulfate concentration and 2.0 M hydrogen peroxide concentration. It is also confirmed that goethite was precipitated and formed from that ammonia elution. As the amount of Fe-removal was increased in a solid-residue, the recovery of Au and Ag were increased, too.

Aqueous oxidation of sulfide ore (part 1) Aqueous Oxidation of Marmatite in Ammonia Solution (黃化鑛의 液相酸化 (第1報) 亞鉛鑛의 암모니아溶液中에서의 濕式酸化)

  • Kim, Dong-Seon;Chang, Tae-Seong;Lee, Yong-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.54-58
    • /
    • 1966
  • By means of aqueous oxidation in ammonia solution, metallic zinc and sulfur in marmatite were leached. In this study, it was found that the concentration of ammonia was extremely influenced on the oxidation ratio of Zn and S, and the more the leaching temperature was low, the more their leaching ratio was decreased. The maximum leaching ratio to the contents in marmatite was obtained at the following conditions. Particle size 270 mesh above, $NH_3$ conc, 25%, Press. 4.2 kg/$cm_2$, Temp.$ 60 ^{\circ}C$, Time 20hrs. Leaching ratio; Zn 55% and S 50%.

  • PDF

Effect on the Hydrogen Peroxide in the Ozonation of Ammonia (오존에 의한 암모니아 산화시 과산화수소가 미치는 영향)

  • 박문숙;안재동;노봉오
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Ammonia is used in the manufacture of fertilizers, refrigerants, stabilizers and many household cleaning agents. These wide applications resulted in ammonia contamination in water. Ammonia can be removed from water by physical, biological, and chemical methods. Ozonation is effictive in the treatment of water with low concentration of ammonia. This study is undertaken to provide kinetic data for the ozonation of ammonia with or without hydrogen peroxide. The results were as follows; The destruction rate of ammonia increased gradually with the influent hydrogen peroxide concentration up to 0.23 mM and inhibited in the range of 0.23~11.4mM, and the maximum removal rate of ammonia achieved at 0.23mM of hydrogen peroxide, and the overall kinetics was first order. The combination effect of hydrogen and ozone to oxide ammonia in aqueous solution was better than ozone alone. The reacted ammonia was converted completely to nitrate ion.

  • PDF

A Simple and One-pot Oxidative Conversion of Alcohols or Aldehydes to the Nitriles using NaIO4/KI in Aqueous NH3

  • Zolfigol, Mohammad Ali;Hajjami, Maryam;Ghorbani-Choghamarani, Arash
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4191-4194
    • /
    • 2011
  • Sodium periodate ($NaIO_4$) and potassium iodide (KI) in aqueous ammonia has been used for the one-pot synthesis of nitriles from the corresponding aldehydes and alcohols in moderate to good yield. This transformation, proceeds via an in situ oxidation- imination-aldimine oxidation sequence.

Characteristics of Ammonia Removal by Natural Neutralizer (천연중화제를 이용한 암모니아 제거특성)

  • Kim, Tak-Hyun;Park, Hyung-Yong;Kim, Sangyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.651-659
    • /
    • 2000
  • The characteristics of ammonia removal by natural neutralizer were studied by using a scrubber type equipment. As operation parameters, neutralizer dilution ratio, neutralizer inlet flowrate, air flowrate and initial ammonia concentration were selected and their effects on ammonia removal efficiency were investigated. The optimal removal effect was achieved at neutralizer dilution ratio of 1.0% and neutralizer inlet flowrate of $60m{\ell}/min$. On the other hand, with respect to air flowrate and initial ammonia concentration, there was no significant effect on removal efficiency, when loading rate was considered. In addition, ammonia removal reaction was investigated by analyzing the ammonia oxides, such as nitrites and nitrates, after reacting ammonium solution with natural neutralizer. The result shows a partial oxidation by natural neutralizer besides dominant absorption of ammonia.

  • PDF

Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature (금속담지 활성알루미나 촉매의 암모니아 저온연소반응)

  • Lim, Yun-Hui;Lee, Ji-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.371-379
    • /
    • 2013
  • In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over $300^{\circ}C$). However, at lower temperature ($200^{\circ}C$), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and $NO_2$, toxic by-products, were effectively inhibited.