• Title/Summary/Keyword: Amino acid sequence

Search Result 1,693, Processing Time 0.021 seconds

Molecular Cloning, Tissue Distribution and Segmental Ontogenetic Regulation of b0,+ Amino Acid Transporter in Lantang Pigs

  • Zhi, Ai-Min;Feng, Ding-Yuan;Zhou, Xiang-Yan;Zou, Shi-Geng;Huang, Zhi-Yi;Zuo, Jian-Jun;Ye, Hui;Zhang, Chang-Ming;Dong, Ze-Min;Liu, Zhun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1134-1142
    • /
    • 2008
  • Cationic amino acid transporter $b^{0,+}AT$ (HGMW-approved gene symbol SLC7A9, solute carrier family 7, member 9) plays a crucial role in amino acid nutrition. In the present study, we describe the cloning and sequencing of porcine $b^{0,+}AT$. Based on the sequence of porcine $b^{0,+}AT$ deposited in the NCBI (National Center for Biotechnological Information), we identified a putative porcine homologue. Using rapid amplification of cDNA ends (RACE), the full-length cDNA encoding porcine $b^{0,+}AT$ was isolated. The porcine $b^{0,+}AT$ cDNA was 1,680 bp long, encoding a 487 amino acid trans-membrane protein. The predicted amino acid sequence was found to have 88.9% and 87.1% identity with human and mouse $b^{0,+}AT$, respectively. Real-time RT-PCR indicated porcine $b^{0,+}AT$ transcripts expressed in heart, kidney, muscle and small intestine. The small intestine had the highest $b^{0,+}AT$ mRNA abundance while the muscle had the lowest (p<0.05). Along the longitudinal axis, the ileum had the highest $b^{0,+}AT$ mRNA abundance while the colon had the lowest (p<0.05). The $b^{0,+}AT$ mRNA level was highest on day 7 and 90 in the duodenum (p<0.05). It increased from day 1 to day 26 in the jejunum (p>0.05) and had the highest abundance on day 60 (p<0.05). There was, however, no difference between day 1, 7, 26, 30, 90 and 150 (p>0.05). The strongest $b^{0,+}AT$ expression appeared on day 7 in the ileum before weaning, and then decreased till day 30 but rose gradually again from day 60 to 150 (p<0.05).

Sequence Analysis of $\beta$-Xylosidase Gene from Bacillus stearothermophilus (Bacillus stearothermophilus $\beta$-Xylosidase 유전자의 염기 서열 결정 및 분석)

  • 오현주;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.134-142
    • /
    • 1994
  • The neucleotide sequences of the xylA gene encoding $\beta $-xylosidase of Bacillus stearothermophilus and is its flanking regions were datermined. Three open reading frame(ORFs) were found, one of which(ORF1) appeared to code for the $\beta $-xylosidase. The 1830 base pair ORF1 encoded 609 amino acids starting from a TTG initiation codon. The molecular weight deduced from the nucleotide sequence(68 KD) was in agreement with that estimated by SDS-polyacrylamide gel electrophoresis of the purified enzyme(66 KD). The Shine-Dalgarno sequence(5'-AGGAGG-3') was found 11 bp upstream of the initiation codon. Further 15 bp upstream, there observed a potential transcription initiation signals. The putative -10 sequence(CATAAT) and -35 sequence(TTGTTA) coresponded closely to the consensus sequences for Bacillus subtilis RNA polymerase with major sigma factor. The guanine-plus-cytosine content of the coding region of the xylA gene was 56mol% while that of the third position of the codons was 63 mol%. Based on the comparison with the amino acid sequences of several other carbohydrate degrading enzymes, two conserved regions, possibly participating in the catalytic mechamism of $\beta $-xylosidase xylA, were identified in 278-298 and 329-350 regions of the translated xylA gene. The nucleotide sequence of the xylA was found to exhibit no homology to any other genes so far reproted.

  • PDF

Nucleotide Sequence Analysis of the RNA-dependent RNA Polymerase Gene of Infectious Pancreatic Necrosis Virus DRT Strain

  • Lee, Hyung-Hoan;Chung, Hye-Kyung;Lee, Seong-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.264-269
    • /
    • 1994
  • To determine the nucleotide sequence of the ds RNA segment B containing the RNA dependent RNA polymerase (RdRp) gene of the DRT strain of infectious pancreatic necrosis virus (lPNV), the cDNA of the ds RNA segment B of the DRT strain of IPNV was synthesized using the reverse transcriptase (RT)-polymerase chain reaction (PCR) and its cDNA nucleotide sequence was determined. The DRT segment B was 2, 783 bp long and contained only a single long open reading frame (ORF) of 2, 535 bp in length. This ORF nucleotides encoded the VPl protein, the putative RdRp of IPNV. The VPl protein comsisted of 845 amino acids. The molecular weight of the RdRp, as deduced from the nucleotide sequence, is 94, 426. The nucleotide sequence of the ORF of the DRT showed 89.7% homology to the Jasper strain, but 80.8% to the Sp strain. The amino acid sequence of the ORF of the DRT sho.wed 97.6% homology to the Jasper strain, but 88.7% to the Sp strain. The conserved GTP-binding motif was detected in VPl protein.

  • PDF

Characterization of Plasmid pKJ36 from Bifidobacterium longum and Construction of an E. coli-Bifidobacterium Shuttle Vector

  • Park, Nyeong-Soo;Shin, Dong-Woo;Lee, Ke-Ho;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.312-320
    • /
    • 2000
  • Abstract The full sequence of the plasmid pKJ36, which was derived from Bifidobacterium longum KJ, was determined and analyzed to construct shuttle vectors between E. coli and Bifidobacterium. The plasmid pKJ36 was composed of 3,625 base pairs with a 65.1% G+C content. The structural organization of pKJ36 was highly similar to that of pKJ50, and the three major ORFs on pKJ36 showed high amino acid sequence homologies with those of pKJ50. The putative proteins coded by these three ORFs were designated as RepB (32.0 kDa, pI=9.25), MembB (29.0 kDa, pI=12.25), and MobB (39.0 kDa, pI=IO.66), respectively. The amino acid sequence of RepB showed a 57% identity and 70% similarity with that of the RepA protein of pKJ50. Upstream of the repB gene, the so-called iteron sequence was directly repeated four-and-ahalf times and a conserved dnaA box was identified. An amino acid sequence comparison between the MobB and MobA of pKJ50 revealed a 48% identity and 61 % similarity. A conserved oriT sequence with an inverted repeat identical to that of pKJ50 was also found upstream of the mobB gene. A hydropathy analysis of MembB revealed four possible transmembrane regions. The expressions of the repB and membB genes were confirmed by RT-PCR. The in vitro translation reaction of pKJ36 showed protein bands with anticipated sizes with respect to each putative gene product. S 1 endonuclease treatment and Southern hybridization suggested that pKJ36 replicates by a rolling circle mechanism via a single-stranded DNA (ssDNA) intermediate. A shuttle vector between E. coli and Bifidobacterium sp. was constructed using the pKJ36, pBR322, and staphylococcal chloramphenicol acetyl transferase (CAT) gene. The successful transformation of the Bifidobacterium strains was shown by Southern hybridization and PCR. The transformation efficiency differed from strain to strain and, depending on the electroporation conditions, with a range between $1.2{\times}10^1-2.6{\times}10^2{\;}cfu/\mu\textrm{g}$ DNA.X> DNA.

  • PDF

Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]

  • Singh, Kashmir;Kumar, Sanjay;Yadav, Sudesh Kumar;Ahuja, Paramvir Singh
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • Tea leaves are major source of catechins—antioxidant flavonoids. Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is one of the important enzymes that catalyzes the reduction of dihydroflavonols to leucoanthocyanins, a key ''late'' step in the biosynthesis of catechins. This manuscript reports characterization of DFR from tea (CsDFR) that comprised 1,413 bp full-length cDNA with ORF of 1,044 bp (115-1,158) and encoding a protein of 347 amino acids. Sequence comparison of CsDFR with earlier reported DFR sequences in a database indicated conservation of 69-87% among amino acid residues. In silico analysis revealed CsDFR to be a membrane-localized protein with a domain (between 16 and 218 amino acids) resembling the NAD-dependent epimerase/dehydratase family. The theoretical molecular weight and isoelectric point of the deduced amino sequence of CsDFR were 38.67 kDa and 6.22, respectively. Upon expression of CsDFR in E. coli, recombinant protein was found to be functional and showed specific activity of 42.85 nmol $min^{-1}$ mg $protein^{-1}$. Expression of CsDFR was maximum in younger rather than older leaves. Expression was down-regulated in response to drought stress and abscisic acid, unaffected by gibberellic acid treatment, but up-regulated in response to wounding, with concomitant modulation of catechins content. This is the first report of functionality of recombinant CsDFR and its expression in tea.

Identification of the sprU Gene Encoding an Additional sprT Homologous Trypsin-Type Protease in Streptomyces griseus

  • YANG HYE-YOUNG;CHOI SI-SUN;CHI WON-JAE;KIM JONG-HEE;KANG DAE-KYUNG;CHUN JAESUN;KANG SANG-SOON;HONG SOON-KWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1125-1129
    • /
    • 2005
  • Cloning of a 6.6-kb BamHI digested chromosomal DNA from S. griseus IFO13350 revealed the presence of an additional gene encoding a novel trypsin-like enzyme, named SprU. The SprU protein shows a high homology ($79\%$ identity, $88\%$ similarity) with the SGT protease, which has been reported as a bacterial trypsin in the same strain. The amino acid sequence deduced from the nucleotide sequence of the sprU gene suggests that SprU is produced as a precursor consisting of an amino-terminal presequence (29 amino acid residues), prosequence (4 residues), and mature trypsin consisting of 222 amino acids with a molecular weight of 22.94 kDa and a calculated pI of 4.13. The serine, histidine, and aspartic acid residues composing the catalytic triad of typical serine proteases are also well conserved. When the trypsin activity of the SprU was spectrophotometrically measured by the enzymatic hydrolysis of the artificial chromogenic substrate, N-${alpha}$-benzoyl-DL-arginine-p-nitroanilide, the S. lividans transformant with pWHM3-U gave 3 times higher activity than that of control. When the same recombinant plasmid was introduced into S. griseus, however, the gene dosage effect was not so significant, as in the cases of other genes encoding serine proteases, such as sprA, sprB, and sprD. Although two trypsins, SprU and SGT, have a high degree of homology, the pI values, the gene dosage effect in S. griseus, and the gene arrangement adjacent to the two genes are very different, suggesting that the biochemical and biological function of the SprU might be quite different from that of the SGT.

Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

  • Jiang, Ming Feng;Hu, Ming Jun;Ren, Hong Hui;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1774-1783
    • /
    • 2015
  • Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector $pPICZ{\alpha}A$ and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

Safety assessment of the AtCYP78A7 protein expressed in genetically modified rice tolerant to abiotic stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Park, Jung-Ho;Yoon, Won Kee;Kim, Ho Bang;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.248-257
    • /
    • 2018
  • Overexpression of AtCYP78A7, a gene encoding a cytochrome P450 protein, has been reported to improve tolerance to drought stress in genetically modified (GM) rice (Oryza sativa L.). The aim of this study was to evaluate the potential allergenicity and acute oral toxicity of the AtCYP78A7 protein expressed in GM rice. Bioinformatics analysis of the amino acid sequence of AtCYP78A7 did not identify any similarities with any known allergens or toxins. It showed that no known allergen had more than a 35% amino acid sequence homology with the AtCYP78A7 protein over an 80 amino acid window or more than 8 consecutive identical amino acids. The gene encoding the AtCYP78A7 protein was cloned in the pGEX-4T-1 vector and expressed in E. coli. Then, the AtCYP78A7 protein was purified and analyzed for acute oral toxicity. The AtCYP78A7 protein was fed at a dose of 2,000 mg/kg body weight in mice, and the changes in mortalities, clinical findings, and body weight were monitored for 14 days after the dosing. Necropsy was carried out on day 14. The protein did not cause any adverse effects when it was orally administered to mice at 2000 mg/kg body weight. These results indicate that the AtCYP78A7 protein expressed in GM rice would not be a potential allergen or toxin.

Allergic risk assessment of genetically modified cucumber mosaic virus resistant pepper (유전자변형 바이러스 저항성 고추의 알레르기 안전성)

  • Son, Dae-Yeul
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.901-907
    • /
    • 2015
  • Genetically modified (GM) pepper H15 containing the gene for cucumber mosaic virus (CMV) coat protein (CP) and its control line non-GM pepper P2377 were investigated for their allergic risk. Amino acid sequence of the inserted gene product CMV-CP was compared with those of known allergens. No known allergen had greater than 35% amino acid sequence homology over an 80 amino acid window or more than 8 consecutive identical amino acids. Protein patterns of GM and non-GM pepper extracts were evaluated by SDS-PAGE, which showed similar distribution of protein bands for both GM and non-GM pepper. Antigen-antibody reactions were compared between GM and its non-transgenic parental control. ELISA and immunoblot analysis of sera from allergic patients showed some IgE reactivity; however, no differences were observed between GM pepper H15 and P2377. We therefore conclude that CMV-CP is less likely to be an allergen; the protein composition and allergenicity of the GM pepper H15 is not different from that of P2377 and safe as a commercial host.

Phylogenetic analysis and antigenic determinant prediction of red sea bream iridovirus isolated in Korea from 2019 to 2023 (2019년부터 2023년까지 국내에서 분리된 참돔이리도바이러스의 계통 분류 및 항원 결정기 예측)

  • Guk Hyun Kim;Joon Gyu Min;Hyun Do Jeong;Kwang Il Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.25-36
    • /
    • 2024
  • In this study, we analyzed the phylogenetic classification, epitope prediction, and pathogenicity of red sea bream iridovirus (RSIV) isolated from rock bream between 2019 and 2023. Phylogenetics based on genes encoding MCP and ATPase indicated that all five RSIV isolates belonged to RSIV subtype II. The deduced amino acid sequence of the MCP for the amplicons (1362 bp) obtained from RSIV isolates had a length of 453 amino acids. Among these, the amino acid sequences of the RSIV-19, 21, 22, and 23 isolates showed 100% identity, while the RSIV-20 isolate showed 99.78% identity with one residue difference at position 306. As a result of antigenicity analysis based on amino acid sequence, the antigenicity score of the RSIV-20 isolate was 0.6386 and the other RSIV isolates were 0.6365. Additionally, the prediction of their antigenic determinants resulted in a total of 17 identical antigenic plots. When each RSIV was inoculated into rock bream, no significant differences were observed with 100% cumulative mortality in all groups. This study provides data on the potential for genetic variation of RSIV isolated in the same marine area over the past five years, and the antigenicity and pathogenicity results of each isolate are expected to be useful information for selecting future vaccine strains.