• 제목/요약/키워드: American Concrete Institute

검색결과 65건 처리시간 0.021초

Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms

  • Fahmy, Ezzat H.;Shaheen, Yousry B.I.;Abdelnaby, Ahmed Mahdy;Abou Zeid, Mohamed N.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.83-97
    • /
    • 2014
  • This paper presents the results of an investigation aimed at developing reinforced concrete beams consisting of precast permanent U-shaped reinforced mortar forms filled with different types of core materials to be used as a viable alternative to the conventional reinforced concrete beam. To accomplish this objective, an experimental program was conducted and theoretical model was adopted. The experimental program comprised casting and testing of thirty beams of total dimensions $300{\times}150{\times}2,000mm$ consisting of permanent precast U-shaped reinforced mortar forms of thickness 25 mm filled with the core material. Three additional typical reinforced concrete beams of the same total dimensions were also cast to serve as control specimens. Two types of single-layer and double-layers steel meshes were used to reinforce the permanent U-shaped forms; namely welded wire mesh and X8 expanded steel mesh. Three types of core materials were investigated: conventional concrete, autoclaved aerated lightweight concrete brick, and recycled concrete. Two types of shear connections between the precast permanent reinforced mortar form and the core material were investigated namely; adhesive bonding layer between the two surfaces, and mechanical shear connectors. The test specimens were tested as simple beams under three-point loadings on a span of 1,800 mm. The behavior of the beams incorporating the permanent forms was compared to that of the control beams. The experimental results showed that better crack resistance, high serviceability and ultimate loads, and good energy absorption could be achieved by using the proposed beams which verifies the validity of using the proposed system. The theoretical results compared well with the experimental ones.

외기조건이 개질된 라텍스 혼입콘크리트 슬래브 표면에 미치는 영향 (Effects of climate condition on concrete slab with modified-latex)

  • 차훈;김대건;최상환;문경식
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.7-8
    • /
    • 2014
  • Latex-modified concrete using ready mix concrete (R-LMC) was developed for application of building construction project (specifically, the rooftop of a parking garage unable to use heavy equipments for bridge deck overlay) due to three major outstanding properties of R-LMC; bond strength, resistance of cracks at early age, and resistance of freezing and thawing. However, R-LMC at the placement stage is required to be sufficiently cured because R-LMC is very sensitive to rate of evaporation of surface moisture. This study focused on effects of different curing methods and climate condition on cracks on the surface of hardened R-LMC considering the chart of rate of evaporation of surface moisture from concrete provided by American Concrete Institute in manual for placement of latex modified concrete.

  • PDF

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

우리나라 한중콘크리트 적용기간의 변화 (Variation of Application Period of Cold Weather Concrete in Korea)

  • 한민철
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.237-245
    • /
    • 2005
  • 본 연구에서는 우리나라 기상청의 기온자료를 이용하여 시간변화에 따른 각 지역의 한중콘크리트 적용기간을 KCI, ACI 및 AIJ 방법에 따라 산정한 후 동방법의 기존연구결과와 비교 분석함으로써 시간변화에 따른 한중콘크리트 적용기간의 변화를 분석하고자 하였다. 연구결과에 따르면, KCI에 의한 적용기간은 평균 9.5순으로 나타났고, ACI에 의한 적용기간은 10.1순 그리고 AIJ에 의한 적용기간은 9.2순으로 산정되었다. 시간변화에 따른 적용기간으로서 KCI 및 ACI 규정에 의한 본연구의 적용기간은 10년전의 종전 연구보다 약 5${\~}$6일 정도 짧아진 것으로 확인되었으나, AIJ 규정에 의한 적용기간은 종전의 연구와 거의 차이가 없었고, 단, 김의 연구와 비교할 경우 약 3일 정도 짧아지는 것으로 나타났다. 한편, 지역별로는 남부지방의 경우 종전연구에 비하여 한중콘크리트 적용기간이 비교적 많이 단축되었는데,. 이는 지구의 온난화에 의한 평균기온의 상승으로 인한 것으로 사료된다.

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

Post-Damage Repair of Prestressed Concrete Girders

  • Ramseyer, Chris;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.199-207
    • /
    • 2012
  • Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze-thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

Application of waste tire rubber aggregate in porous concrete

  • Shariati, Mahdi;Heyrati, Arian;Zandi, Yousef;Laka, Hossein;Toghroli, Ali;Kianmehr, Peiman;Safa, Maryam;Salih, Musab N.A.;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.553-566
    • /
    • 2019
  • This study aimed to categorize pervious rubberized concrete into fresh and hardened concrete analyzing its durability, permeability and strength. During the globalization of modern life, growing population and industry rate have signified a sustainable approach to all aspects of modern life. In recent years, pervious concrete (porous concrete) has significantly substituted for pavements due to its mechanical and environmental properties. On the other hand, scrap rubber tire has been also contributed with several disposal challenges. Considering the huge amount of annually tire wastes tossing out, the conditions become worse. Pervious concrete (PC) gap has graded surface assisted with storm water management, recharging groundwater sources and alleviate water run-offs. The results have shown that the use of waste tires as aggregate built into pervious concrete has tremendously reduced the scrap tire wastes enhancing environmental compliance.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Simulation of Prestressed Steel Fiber Concrete Beams Subjected to Shear

  • Lu, Liang;Tadepalli, P.R.;Mo, Y.L.;Hsu, T.T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.297-306
    • /
    • 2016
  • This paper developed an analytical software, called Simulation of Concrete Structures (SCS), which is used for numerical analysis of shear-critical prestressed steel fiber concrete structures. Based on the previous research at the University of Houston (UH), SCS has been derived from an object-oriented software framework called Open System for Earthquake Engineering Simulation (OpenSees). OpenSees was originally developed at the University of California, Berkeley. New module has been created for steel fiber concrete under prestress based on the constitutive relationships of this material developed at UH. This new material module has been integrated with the existing material modules in OpenSees. SCS thus developed has been used for predicting the behavior of the prestressed steel fiber concrete I-beams and Box-beams tested earlier in this research. The analysis could well predict the entire behavior of the beams including the elastic stiffness, yield point, post-yield stiffness, and maximum load for both web shear and flexure shear failure modes.

제안된 Spliced PSC-I형 거더의 휨거동에 관한 연구 (A Study on the Flexural Behavior of Proposed Spliced PSC-I Type Girder)

  • 심종성;오홍섭
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.13-23
    • /
    • 2000
  • In this study, an flexural test on half-scale spliced PSC-I girder was conducted to verify the efficiency of the long span spliced girder as suggested by the Korean Highway Design Specification. The experimental results showed that the specimens developed a complex failure mode due to flexural-compression and torsional stress. The cracking moment of each girder was higher the experiment than was calulated by the ACI and the ultimate strength were the almost same. To estimate the safety and the structural efficiency of the spliced girder, the proposed Yielding Resistance Index(YRI) and ductility index by American Concrete Institutes were used based on the energy concept. The proposed YRI defined the ratio of crack resisting energy and the total energy calculated from load-displacement relationship. Based on the analysis of YRI and ductility index, the flexural behavior of the spliced girder was found to be efficient. Through the experimental results, the structural behavior of proposed spliced PSC I-type girder for long span bridge was found to be more efficient than the exsisting PSC I-type girders.