• Title/Summary/Keyword: Amelioration effects

Search Result 112, Processing Time 0.016 seconds

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Variation of Rice Production for Two Decades before and after Breeding Tongil Variety in Korea (수도 통일품종 육성보급 전후 20년간의 생산성 변이)

  • Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.183-192
    • /
    • 1982
  • The variability of rice productivity during last 2 decades (1961-1980) of ten years before and after the introduction of"Tongil" was reviewed from the epochal, regional and varietal points of view. During that period the cultivated area of paddy rice have remained almost unchanged, while the total rice production have got elevated from 3, 463 million metric tons in 1961 to 6.006 million metric tons in 1977, recording 73.4% increase. This remarkable increase in rice production is considered to be attributable much to the development and release of new high yielding variety, "Tongil", coupled with the amelioration of cultural techniques. However, in 1978 Tongil type varieties experienced the epidemic outbreak of blast disease due to the shifted race population of blast fungus and in 1980 recorded poor rice production as low as in 1960's due to the unfavorable weather stress throughout the rice growing season, giving rise to many problems awaiting solutions for securing the stabilized high production of rice. The rice yield has continued the gradual increase during last two decades but its difference between farmer and research organization have got wider from 79kg/10a during 1960 to 1971 to 101kg/l0a during 1972 to 1980, and also the inter-regional differences have been increased from 50-60kg/10a to 80kg/10a during those periods. Therefore, this proves that we have raised the upper boundary of rice yield by increasing the yield potential of rice variety but have not changed those absolute deviations. Estimates indicate that the increased rice production during that period was indebted 40 percent to the varietal improvement and 13 percent to the ameliorated agro-technologies, and the rest, 47 percent, could be ascribed to the other factors besides varieties and cultural technologies such as the improved agricultural environments, etc. Of course, even though it cannot be expected to unify the cultural environments and the cultural technologies, provided that much efforts are to be endeavored to minimize the yield difference of 20 percent between farmer and research organizations and the inter-regional yield difference of 20 percent, much increased rice production can be expected to be achieved with the current level of cultural technology and the yielding potential of the present rice varieties. In order to expedite the above effects on rice production the followings are to be put into practices consitently and steadfastly. 1. Reinforcement of breeding for varieties with high yielding potential and less susceptible to climatic-stress and pests, and of basic physicoecological studies of rice plant for improving the cultural technologies. 2. Continuous endeavor to secure the stabilized cultural environments by improving the soil fertility and increasing the drainage and irrigation facilities. 3. Political back-up to encourage the farmers' incentives for production 4. Precise surveys for agricultural statistics to facilitate the long-term planninge long-term planning.

  • PDF