• Title/Summary/Keyword: Ambiguous Type Uncertainty

Search Result 2, Processing Time 0.016 seconds

Strategic Pricing Framework for Closed Loop Supply Chain with Remanufacturing Process using Nonlinear Fuzzy Function (재 제조 프로세스를 가진 순환 형 SCM에서의 비선형 퍼지 함수 기반 가격 정책 프레임웍)

  • Kim, Jinbae;Kim, Taesung;Lee, Hyunsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.29-37
    • /
    • 2017
  • This papers focuses on remanufacturing processes in a closed loop supply chain. The remanufacturing processes is considered as one of the effective strategies for enterprises' sustainability. For this reason, a lot of companies have attempted to apply remanufacturing related methods to their manufacturing processes. While many research studies focused on the return rate for remanufacturing parts as a control parameter, the relationship with demand certainties has been studied less comparatively. This paper considers a closed loop supply chain environment with remanufacturing processes, where highly fluctuating demands are embedded. While other research studies capture uncertainties using probability theories, highly fluctuating demands are modeled using a fuzzy logic based ambiguity based modeling framework. The previous studies on the remanufacturing have been limited in solving the actual supply chain management situation and issues by analyzing the various situations and variables constituting the supply chain model in a linear relationship. In order to overcome these limitations, this papers considers that the relationship between price and demand is nonlinear. In order to interpret the relationship between demand and price, a new price elasticity of demand is modeled using a fuzzy based nonlinear function and analyzed. This papers contributes to setup and to provide an effective price strategy reflecting highly demand uncertainties in the closed loop supply chain management with remanufacturing processes. Also, this papers present various procedures and analytical methods for constructing accurate parameter and membership functions that deal with extended uncertainty through fuzzy logic system based modeling rather than existing probability distribution based uncertainty modeling.

A Fuzzy Clustering Algorithm for Clustering Categorical Data (범주형 데이터의 분류를 위한 퍼지 군집화 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.661-666
    • /
    • 2003
  • In this paper, the conventional k-modes and fuzzy k-modes algorithms for clustering categorical data is extended by representing the clusters of categorical data with fuzzy centroids instead of the hard-type centroids used in the original algorithm. The hard-type centroids of the traditional algorithms had difficulties in dealing with ambiguous boundary data, which might be misclassified and lead to thelocal optima. Use of fuzzy centroids makes it possible to fully exploit the power of fuzzy sets in representing the uncertainty in the classification of categorical data. The distance measure between data and fuzzy centroids is more precise and effective than those of the k-modes and fuzzy k-modes. To test the proposed approach, the proposed algorithm and two conventional algorithms were used to cluster three categorical data sets. The proposed method was found to give markedly better clustering results.