• Title/Summary/Keyword: Ambient particulate matter

Search Result 133, Processing Time 0.026 seconds

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Characteristics of Particulate Matter Concentration and Classification of Contamination Patterns in the Seoul Metropolitan Subway Tunnels (서울시 지하철 터널 내 입자상물질의 농도 특성 및 오염형태 분류)

  • Lee, Eun-Sun;Lee, Tae-Jung;Park, Min-Bin;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.593-604
    • /
    • 2017
  • The suspended particulate matter(PM) was measured in subway tunnel of Seoul Line 1 to 9 in order to evaluate the pollution degree and characteristics of the PM in the subway tunnel. Also, to analyze the effect of outdoor aerosol concentration on the PM concentration of subway tunnels, the ambient PM concentration around the subway station was extracted by spatial analysis using $PM_{10}$ data of Seoul air pollution monitoring network. Finally, in order to understand pollution pattern in the Seoul subway tunnels, cluster analysis was performed based on input data set such as PM levels in tunnel, tunnel depth, length, curvature radius, outdoor ambient air pollution levels and so on. The average concentration of $PM_{10}$, $PM_{2.5}$, and $PM_1$ on subway tunnels were $98.0{\pm}37.4$, $78.4{\pm}28.7$, and $56.9{\pm}19.2{\mu}g/m^3$, respectively. As a result of the cluster analysis, tunnels from Seoul subway Line-1 to Line-9 were classified into five classes, and the concentrations and physical properties of the tunnels were compared. This study can provide a method to reduce PM concentration in tunnel for each pollution pattern and provide basic information about air quality control in Seoul subway tunnel.

Development of a Real-time Monitoring Device for Measuring Particulate Matter

  • Kim, Dae Seong;Cho, Young Kuk;Yoon, Young Hun
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, we have developed a real-time monitoring device for measuring $PM_{10/2.5/1}$ of ambient aerosol particles. The real-time PM (Particulate Matter) monitor was based on the light scattering method and had 16 channels in particle size. The laboratory and field tests were carried out to evaluate the performance of the PM monitor developed. Arizona Road Dust particles ranging from diameter of 0.1 to $20{\mu}m$ were generated as test particles in the laboratory test. The field test was carried out at the Seoul Meteorological Observatory. We can obtain the particle size and number concentration (particle size distribution) only from the real-time PM monitor developed. Therefore, the average density of aerosol particles was used to obtain the PM data from the particle size distribution. The $PM_{10/2.5/1}$ results of the PM monitor were compared with the data of the Grimm Dust Monitor (Model 1.108) and a beta ray gauge (Thermo Fisher Scientific). As a result, it was shown that the $PM_{10/2.5/1}$ results obtained by the real-time PM monitor agreed well with the data of the reference devices, and overall, the real-time PM monitor could be used as a PM monitoring device for real-time monitoring of the ambient particles.

Effect of Air Pollution on Emergency Room Visits for Asthma : a Time Series Analysis (대기오염과 천식발작의 관련성에 관한 시계열적 연구)

  • Ju, Young-Su;Cho, Soo-Hun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.1
    • /
    • pp.61-72
    • /
    • 2001
  • Objectives : To evaluate the hypothesis that increasing ambient levels of ozone or particulate matter are associated with increased emergency room visits for asthma and to quantify the strength of association, if any, between these. Methods : Daily counts of emergency room visits for asthma, air quality, and weather data were collected from hospitals with over 200 beds and from monitoring Stations in Seoul, Korea from 1994 through 1997. Daily counts of emergency mom visits for asthma attack were analyzed using a general additive Poisson model, with adjustment for the effects of secular trend, seasonal variation, Sunday and holiday, temperature, and humidly, according to levels of ozone and particulate matter. Results : The association between daily counts of emergency room visits for asthma attack and ozone levels was statistically significant in summer(from June to August), and the RR by unit inclement of 100 ppb ozone was 1.30(95% CI = $1.11\sim1.52$) without lag time. With restriction of the period from April to September in 1996, the RR was 1.37(95% CI = $1.06\sim1.76$), and from June to August in 1995, the RR was 1.62(95% CI = $1.12\sim2.35$). In the data for children$(5\sim14yr)$, the RR was 2.57(95% CI = $1.31\sim5.05$) with restriction of the period from April to September in 1997. There was no Significant association between TSP levels and asthma attacks, but a slight association was seen between PM10 levels and asthma attacks in a very restricted period. Conclusion : There was a statistically significant association between ambient levels of ozone and daily counts of emergency room visits for asthma attack. Therefore, we must make efforts to effectively minimize air pollution, in order to protect public health.

  • PDF

SPRAY CHARACTERISTICS OF DME IN CONDITIONS OF COMMON RAIL INJECTION SYSTEM(II)

  • Hwang, J.S.;Ha, J.S.;No, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.119-124
    • /
    • 2003
  • Dimethyl Ether (DME) is an excellent alternative fuel that provides lower particulate matter (PM) than diesel fuel under the same engine operating conditions. Spray characteristical of DME in common rail injection system were investigated within a constant volume chamber by using the particle motion analysis system. The injector used in this study has a single hole with the different orifice diameter of 0.2, 0.3 and 0.4 mm. The injection pressure was fixed at 35MPa and the ambient pressure was varied from 0.6 to 1.5 MPa. Spray characteristics such as spray angle, spray tip penetration and SMD (Sauter mean diameter) were measured. Spray angle was measured at 30d$_{0}$, downstream of the nozzle tip. The measured spray angie increased with increase in the ambient pressure. Increase of the ambient pressure results in a decrease of spray penetration. The experimental result, of spray penetration were compared with the predicted one by theoretical and empirical models. Increase in the ambient pressure and nozzle diameter results in an increase of SMD at a distance 30, 45 and 60d$_{0}$, downstream of the nozzle, respectively.ely.

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.

The Effect of Particulate Matter 10 from Asian Dust on the Production of Reactive Oxygen Species, TGF-β, NF-κB, PDGF-α and Fibronectin in MRC-5 Fibroblast Cells (폐 섬유모세포에서 황사의 미세먼지(Particulate Matter 10)가 활성산소족과 TGF-β, NF-κB, PDGF-α, Fibronectin의 생성에 미치는 영향)

  • Kim, Ah Hyun;Chon, Suyeon;Yoon, Jin Young;Kim, Yu Jin;Kyung, Sun Young;Lee, Sang Pyo;Park, Jeong Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.6
    • /
    • pp.528-535
    • /
    • 2009
  • Background: Dust clouds blown by the wind from the arid deserts of Mongolia and Northeast China are known as Asian dust storms. Ambient particulate matter with a diameter <10 ${\mu}m$ ($PM_{10}$) is associated with the exacerbation of respiratory diseases and increased mortality of heart and lung disease patients. The fibrotic effects of $PM_{10}$ of Asian dust to pulmonary fibroblast cells are unknown. This study examined the production of reactive oxygen species (ROS), TGF-${\beta}$, NF-${\kappa}B$, PDGF-$\alpha$ and Fibronectin in fibroblasts exposed to Asian dust particles. Methods: Air samples were collected using a high volume air sampler (Sibata model HV500F) with an air flow of 500 L/min for at least 6 hours. The MRC-5 cells were exposed to 0, 50 and 100 ${\mu}g/mL$ of $PM_{10}$ for 24 hours. ROS was detected by measuring the level of oxidized DCF using FACS. TGF-$\beta$, NF-${\kappa}B$, PDGF-$\alpha$ and fibronectin were detected by western blotting. Results: There was no increase in the ROS, TGF-$\beta$ and PDGF-$\alpha$ levels in the MRC-5 cells exposed to $PM_{10}$. The NF-${\kappa}B$ level was higher in the MRC-5 cells exposed to 50 and 100 ${\mu}g/mL$ of $PM_{10}$ for 24 hours. The fibronectin level in the MRC-5 cells after 24 hours incubation with 50 ${\mu}g/mL$ $PM_{10}$ was significantly higher than the control group ($PM_{10}$ 50 ${\mu}g/mL$ 113.27${\pm}$8.65 of control, p=0.005). Conclusion: $PM_{10}$ from Asian dust increases the activation of NF-${\kappa}B$ and fibronectin expression in MRC-5 fibroblast cells.

Visible Light Communication Based Wide Range Indoor Fine Particulate Matter Monitoring System (가시광통신 기반 광역 실내 초미세먼지 모니터링 시스템)

  • Shakil, Sejan Mohammad Abrar;An, Jinyoung;Han, Daehyun;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Fine particulate matter known as PM 2.5 refers to the atmospheric particulate matter that has a diameter less than 2.5 micrometer identified as dangerous element for human health and its concentration can provide us a clear picture about air dust concentration. Humans stay indoor almost 90% of their life time and also there is no official indoor dust concentration data, so our study is focused on measuring the indoor air quality. Indoor dust data monitoring is very important in hospital environments beside that other places can also be considered for monitoring like classrooms, cements factories, computer server rooms, petrochemical storage etc. In this paper, visible light communication system is proposed by Manchester encoding technique for electromagnetic interference (EMI)-free indoor dust monitoring. Important indoor environment information like dust concentration is transferred by visible light channel in wide range. An average voltage-tracking technique is utilized for robust light detection to eliminate ambient light and low-frequency noise. The incoming light is recognized by a photo diode and are simultaneously processed by a receiver micro-controller. We can monitor indoor air quality in real-time and can take necessary action according to the result.

Indoor and Outdoor Particulate Matter: The Current and Future in Monitoring, Assessment, and Management (실내 외 미세먼지 측정 및 관리 기술 동향)

  • Kim, Jae-Jin;Choi, Wonsik;Kim, Jinsoo;Noh, Youngmin;Son, Youn-Suk;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1635-1641
    • /
    • 2020
  • Air pollution is one of the most severe threats to society globally due to the rapid expansion of urbanization and industrialization. Particularly, particulate matter (PM) pollution was recently designated as a social disaster by the Korean government because of increases in public concerns and the accumulation of scientific evidence that links high levels of PM2.5 (PM smaller than 2.5 ㎛ in diameter) to a long list of adverse health effects. Atmospheric PM concentrations can also affect the indoor PM levels to which people are exposed most of the time. Thus, understanding the characteristics of indoor and ambient PM pollution based on measurements, model simulations, risk assessments, and management technologies is inevitable in establishing effective policies to mitigate social, economic, and health costs incurred by PM pollution. In this special issue, we introduce several interesting studies concerning indoor and outdoor PM from the perspective of monitoring, assessment, and management being conducted by i-SEED (School of Integrated Science for Sustainable Earth & Environmental Disaster at Pukyong National University) and SPMC (School Particulate Matter Center for Energy and Environmental Harmonization). We expect that this special issue can improve our understanding of the current and future of indoor and outdoor PM pollution, integrating the results from interdisciplinary research groups from various academic fields.

Indoor and Outdoor Levels of Particulate Matter with a Focus on I/O Ratio Observations: Based on Literature Review in Various Environments and Observations at Two Elementary Schools in Busan and Pyeongtaek, South Korea (실내 외 농도 비(I/O ratio)에 기반한 주변환경과 실내 미세먼지 농도분포 특성: 선행연구 리뷰와 여름철 부산과 평택 초등학교에서의 측정 결과를 중심으로)

  • Kang, Jiwon;An, ChanJung;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1691-1710
    • /
    • 2020
  • We measured PM2.5 and PM10 (particulate matter less than 2.5 ㎛ and 10 ㎛ in diameter, respectively) simultaneously at 16 locations around an elementary school and classrooms in Busan and Pyeongtaek, South Korea. In this study, we compared the results of this field intensive with those in the literature (144 cases of 30 studies), focusing on I/O (Indoor/Outdoor) ratios. We also reviewed the results of previous studies, categorizing them into related sub-categories for indoor-activities, seasons, building-uses, and the surrounding environment. We conclude that indoor PM10 is affected more by indoor-sources (e.g., physical activities) than PM2.5 in the absence of combustion sources like smoking and cooking. Additionally, PM10 and PM2.5 likely have different indoor-outdoor infiltration efficiencies. Conclusively, PM10 in classrooms can be more sensitively affected by both indoor activities and ambient concentrations, and mechanical ventilation can be more efficient in reducing PM concentrations than natural ventilation.