• 제목/요약/키워드: Ambient Air Velocity

검색결과 89건 처리시간 0.029초

강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구 (An Experimental Study on Flame Spread in One-Dimensional Droplet Array with Forced Convection)

  • 박정;이기만;신강숭
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.68-74
    • /
    • 2000
  • Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.

물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정 (Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교 (Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제12권3호
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

착상을 고려한 극저온 질소-대기 열교환기의 해석 (Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation)

  • 최권일;장호명
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구 (Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • 오토저널
    • /
    • 제13권4호
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF

분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구 (A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition)

  • 정성식;황성일;염정국;전병열
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

자동차용 정온도 열선식 공기유량계의 개발에 관한 연구 (A study on the development of constant temperature hot wire type air flow meter for automobiles)

  • 조성권;유정열;고상근;김동성
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2407-2414
    • /
    • 1992
  • 본 연구에서는 정온도 열선식 공기유량계의 전체적인 회로를 구성한 다음, 여 기에 간단한 온도보상시스템을 첨가함으로써 유동온도의 변화에 관계없이 일정한 출력 이 나오도록 하고, 이에 관련된 온도보상시스템의 메카니즘을 규명하고자 한다. 온 도보상시스템은 여러 가지가 알려져 있으나, Drubka(1977)가 열선브릿지에 단지 온도 센서(thermistor)를 삽입하고, 과열비(overheat ratio), 열선의 냉저항과 작동 중의 저항차, 열선의 브릿지상단에서의 출력 중 한 가지를 일정하게 유지시켜 온도보상을 수행하는 방법을 제안하였다. Takagi(1985)는 위의 방법 중 과열비를 일정하게 유지 시키는 방법을 택하고, 출력으로 브릿지상단의 전압이 아닌 열선에 흐르는 전류를 감 지함으로써 더욱 더 간단한 온도보상시스템을 제안하였다. 본 연구는 바로 이 방법 을 채용하여 온도보상을 수행한다.

선회 분무 연소기의 분무 및 연소특성 분석 (Combustion and Atomization Characteristics of Swirl-Stabilized Spray Burner)

  • 윤성필;안재현;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.434-440
    • /
    • 2000
  • The atomization characteristics of air-assist atomizer which is surrounded by a coflowing airstream is investigated. The air-assist, coflow air stream had swirl imparted to them in the same direction with 45 degree's angle swillers. The fuel and air entered the combustor at ambient temperature and the combustor was operated in an unconfined environment. Diesel fuel was used for all the experiments. Drop size and mean velocity are reported for certain distances downstream from the nozzle. The droplet size and velocity measurements were performed using a two-component phase/Doppler particle analyzer and velocity profiles across the entire flowfield are presented.

  • PDF

다공 디젤분무의 액적-공기 상대속도 측정에 관한 실험적 연구 (An Experimental Study on the Measurement of the Droplet-Air Relative Velocity in the Multi-hole Diesel Spray)

  • 권명훈;신형민;이지근;강신재;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.801-806
    • /
    • 2000
  • This experimental study is to investigate the intermittent spray characteristics of a multi-hole nozzle in a heavy-duty DI diesel engine. Multi 8 hole$(d_n=0.25mm)$, Multi 3 hole$(d_n=0.42)$ and Sing hole nozzle$(d_n=0.25mm)$ were used in this experiment. By using the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of a diesel spray injected intermittently from the multi and the single-hole nozzle into a still ambient were measured. In order to calculate the mean values such as mean velocity, SMD, AMD etc. and to analyze the intermittent characteristics, the time-window of 0.15ms were applied. In the spray, the small droplet$(D<10{\mu}m)$ was regarded as an air flow, and the correlation between the fuel droplet$(10{\mu}m and the air (low was examined. The normalized axial droplet-air relative velocity of the 8 hole, the 3 hole and the single hole nozzle was evaluated as 0.081, 0.067, 0.06 and in case of the radial droplet-air relative velocity, the normalized. value is 0.014, 0.013 and 0.008 respectively.

  • PDF