• Title/Summary/Keyword: Ambient Air Velocity

Search Result 89, Processing Time 0.033 seconds

An Experimental Study on Flame Spread in One-Dimensional Droplet Array with Forced Convection (강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Lee, Kiman;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.68-74
    • /
    • 2000
  • Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.

Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation (물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity (물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation (착상을 고려한 극저온 질소-대기 열교환기의 해석)

  • 최권일;장호명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations (온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

A study on the development of constant temperature hot wire type air flow meter for automobiles (자동차용 정온도 열선식 공기유량계의 개발에 관한 연구)

  • 조성권;유정열;고상근;김동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2407-2414
    • /
    • 1992
  • Constant temperature hot wire air flow meter for automobiles requires temperature compensation system because hot wire output signal is sensitive to ambient temperature variations as well as fluid velocity. The objectives of the present study are to design an air flow meter circuit which is capable of compensating the hot wire output signal for ambient temperature variations and to investigate the mechanism of such temperature compensation. This circuit is composed of platinum hot wire, platinum resistor, two variable resistors, a constant resistor and a DC-amplifier. In particular, by simply replacing a constant resistor in one of the bridge arms of the conventional circuit with platinum resistor and a variable resistor for the purpose of temperature compensation, the deviation of output signal with respect to ambient temperature variations between 27deg. C 70deg. C could be reduced to less than 2.5% for mass flow rate and to less than 5% for velocity respectively. The mechanism of temperature compensation against ambient temperature variations was explained by means of measuring the heat transfer coefficient with hot wire temperature variations and analyzing and analyzing conventional empirical equations qualitatively.

Combustion and Atomization Characteristics of Swirl-Stabilized Spray Burner (선회 분무 연소기의 분무 및 연소특성 분석)

  • Yoon, S.P.;Ahn, J.H.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.434-440
    • /
    • 2000
  • The atomization characteristics of air-assist atomizer which is surrounded by a coflowing airstream is investigated. The air-assist, coflow air stream had swirl imparted to them in the same direction with 45 degree's angle swillers. The fuel and air entered the combustor at ambient temperature and the combustor was operated in an unconfined environment. Diesel fuel was used for all the experiments. Drop size and mean velocity are reported for certain distances downstream from the nozzle. The droplet size and velocity measurements were performed using a two-component phase/Doppler particle analyzer and velocity profiles across the entire flowfield are presented.

  • PDF

An Experimental Study on the Measurement of the Droplet-Air Relative Velocity in the Multi-hole Diesel Spray (다공 디젤분무의 액적-공기 상대속도 측정에 관한 실험적 연구)

  • Kweon, M.H.;Shin, S.H.;Lee, J.K.;Kang, S.J.;Rho, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.801-806
    • /
    • 2000
  • This experimental study is to investigate the intermittent spray characteristics of a multi-hole nozzle in a heavy-duty DI diesel engine. Multi 8 hole$(d_n=0.25mm)$, Multi 3 hole$(d_n=0.42)$ and Sing hole nozzle$(d_n=0.25mm)$ were used in this experiment. By using the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of a diesel spray injected intermittently from the multi and the single-hole nozzle into a still ambient were measured. In order to calculate the mean values such as mean velocity, SMD, AMD etc. and to analyze the intermittent characteristics, the time-window of 0.15ms were applied. In the spray, the small droplet$(D<10{\mu}m)$ was regarded as an air flow, and the correlation between the fuel droplet$(10{\mu}m and the air (low was examined. The normalized axial droplet-air relative velocity of the 8 hole, the 3 hole and the single hole nozzle was evaluated as 0.081, 0.067, 0.06 and in case of the radial droplet-air relative velocity, the normalized. value is 0.014, 0.013 and 0.008 respectively.

  • PDF