• Title/Summary/Keyword: Amberlite XAD-4

Search Result 53, Processing Time 0.024 seconds

A Study on the Adsorption and Recovery of Metal Ions by Amberlite XAD Resins Impregnated with Oxime Compounds (Oxime 화합물을 침윤시킨 Amberlite XAD 수지에 의한 금속이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Eum Chul Hun;Young Hee Kim;Euy Kyung Yu
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 1985
  • The adsorption behaviors of some oxime compounds well known as metal chelating agents on the Amberlite XAD resins were compared by measuring their distribution coefficients (log Kd) in various media, respectively. Among the oxime compounds, salicylaldoxime (SAO) and $\alpha-benzoinoxime(${\alpha}$-BzO)$ which showed large log Kd values were chosen. The characteristics of XAD-4 resins impregnated with SAO and ${\alpha}$-BzO have been studied to apply them for the adsorption and recovery of minute quantities of metal ions in aqueous solution. The optimum conditions for adsorption of SAO and ${\alpha}$-BzO on the resin were 30% methanol media having pH range of 1~8(for SAO) and 1~9 (for ${\alpha}$-BzO), respectively. The distribution coefficients of two oxime compounds were decreased as temperature increased. From the adsorption enthalpy data of SAO and ${\alpha}$-BzO, ranging from 4.96 to 6.66 Kcal/mol, it is suggested that their adsorption mechanism on XAD-4 resin is likely due to molecular adsorption equivalent to dipole-dipole interaction. The impregnated resins were considerably stable in the aqueous solutions of pH 5.0~10.0 and in 0.1~5M hydrochloric acid solutions. The former is the medium for adsorption of metal ions, while the latter is for recovery of the adsorbed metal ions. The adsorption mole ratio of Mn(II), Co(II), Ni(II), Zn(II) ions on SAO-XAD-4 and ${\alpha}$-BzO-XAD-4 resins were about 1 : 2 at the optimum conditions, respectively. The adsorbed metal ions were recovered completely by eluting with 3M HCl-50% methanol solution

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

A Study on Adsorption of Anionic Surfactants with Nonionic Resins (비이온성 수지를 이용한 음이온 계면활성제의 흡착에 관한 연구)

  • Seo, Yang-Gon;Ahn, Jou-Hyeon;Heo, Byeong-Young
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.369-376
    • /
    • 1996
  • The adsorption of the anionic surfactants, sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS) anion surfactants form aqueous solutions with nonionic resins, Amberlite XAD-2, XAD-4 and XAD-7 at temperatures in 15~45$^{\circ}C$ range was studied. Several adsorption isotherm models were used to fit the experimental data, The best results were obtained with the Redlich-Peterson equation and the Freundlich model provided remarkably good fits. For a particular resin at a particular temperature, SDBS was more extensively adsorbed than SLS. The highest adsorption were obtained with XAD-4 resin and the specific surface area of the resins plays a major role in adsorption of the surfactants. Estimations of the isosteric heat of adsorption were indicative of an exothermic process, and their magnitudes manifested a physisorption process.

  • PDF

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (II). 5,7-Dihalo-8-Hydroxyquimoline(DXHQ)-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제2보). 5,7-Dihalo-8-Hydroxyquinoline (DXHQ)-침윤수지)

  • Dai Woon Lee;Chul Hun Eum;Yong Soon Chung;Kyu Chang Park
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.403-411
    • /
    • 1984
  • Amberlite XAD-7 and XAD-4 resins impregnated with DXHQ (5,7-dihalo-8-hydroxyquinoline) were prepared for the adsorption, separation and recovery of heavy metal ions from aqueous solutions. The characteristics of the impregnated resins, DXHQ (X : Cl, Br, I)-XAD were studied to find out the proper pairs of resin and DXHQ for the adsorption of metal ions. The increasing order of the impregnated amount of DXHQ onto XAD-7 resin was as follows: DCHQ < DBHQ < DIHQ. It was observed from the plot of log $K_d$ vs. pH that the optimum pH range for the adsorption of DIHQ onto XAD-4 resin was from 3.0 to 7.0. The stabilities of the DXHQ-XAD resins were investigated by measuring the amount of DXHQ remained on the XAD resin after shaking the DXHQ-XAD resins in various solutions of pH ranging from 2 to 12 and hydrochloric acid solutions. The impregnated resins were considerably stable in both acidic and neutral solutions. The amount of DIHQ leached from DIHQ-XAD-4 resin by eluting with various HCl solutions (1 ∼ 5M) was negligible, but in the case of XAD-7 resin it increases as the concentration of HCl solution increases. The optimum pH ranges, absorption mole ratio (M : DXHQ) and adsorption capacities (mmol metal per gram of resin) for the adsorption of metal ions onto the DXHQ-XAD resins were determined respectively. The stability of metal ion absorbed by the DXHQ-XAD resins was observed as the following order: M-DCHQ-XAD-7 < M-DBHQ-XAD-7 < M-DIHQ-XAD-7. The adsorbed metal ions were quantitatively recovered by eluting with HCl (0.5 ∼ 5M) and DXHQ-XAD resins could be reused over 5 times without re-impregnation of DXHQ.

  • PDF

New Analytical Methods for Separation and Identification of Heavy Metals (II). A Study on the Adsorption and Recovery of Cu(Ⅱ) ion by Amberlite XAD-7 Resins Impregnated with Chelating Agents (중금속의 분리 및 검출을 위한 분석화학적 연구 (제 2 보) 킬레이트제-Amberlite XAD-7 침윤수지에 의한 Cu(II) 이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Chul Hun Eum;Tae Sung Kim;Doo-Soon Shin;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.308-314
    • /
    • 1987
  • The adsorption behavior of some chelating agents on the Amberlite XAD-7 resin was studied to obtain the optimum conditions for the preparation of chelating agent-XAD-7 resins. The chosen chelating agents are cupferron (CP), diphenylcarbazone (DPC), salicylaldoxime (SAO), thiosalicylic acid (TSA), and dimethylglyoxime (DMG), which have been well known chelating agents to Cu(Ⅱ) and Ni (Ⅱ) ions. Among the chelating agent-XAD-7 resins, SAO-XAD-7 and DMG-XAD-7 resins were evaluated as appropriate impregnated resins by investigating their stabilities in the wide pH range and high abilities to adsorb Cu(Ⅱ) and Ni(Ⅱ) ions. The selective adsorption of Cu(Ⅱ) from Ni(Ⅱ) was possible by changing pH condition by SAO-XAD-7 resin. The adsorption capacities of SAO-XAD-7 and DMG-XAD-7 for Cu(Ⅱ) were $7{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin and $2{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin, respectively. The quantitative recovery of Cu(Ⅱ) adsorbed by the resin was demonstrated. The adsorption behavior of Cu(Ⅱ) and Ni(Ⅱ) by the single and mixed bed of chelating agent-XAD-7 resin was discussed.

  • PDF

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF

A Study of the Adsorption Behavior of Organic Acids by Polymeric Adsorbents (고분자 흡착제에 대한 유기산의 흡착성에 관한 연구)

  • Dai Woon Lee;In Ho Lee;Dal Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.483-494
    • /
    • 1988
  • The adsorption behavior of aromatic acids on Amberlite XAD-4 resin was investigated by measuring the distribution coefficient by batch method. The adsorption of solutes on XAD-4 was affected by the several factors such as, analyte concentration, the pH of solution and concentration of pairing ion. The enhanced adsorption of solutes on XAD-4 in the presence of tetraalkylammonium salt as an ion pairing reagent, referred to as ion interaction, was suggested to follow a double layer model where the pairing ion occupies a primary layer at the adsorbent while the solute anion and other anions in the system comlpete for the secondary layer. Therefore, the ability of an ion pairing reagent to enhance solute adsorption depended significantly on the type and concentration of counter-ion and co-anion accompanying the ion pairing reagent or salt used for ionic strength control. In addition, a good linear relationship between the logarithm of capacity factors measured by batch and elution method as a function of the concentration of ion pairing reagent and methanol can be used to predict the retention in elution method on the basis of capacity factors measured by batch method.

  • PDF

Characteristics of the Conversion Pigment from Gardenia jasminoides Yellow Pigment (치자황색소로부터 변환된 색소의 특성)

  • Jeong, Hyung-Seok;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.319-323
    • /
    • 1998
  • Conversion of Gardenia jasminoides yellow pigment into blue-green pigment by 8 bacterial species was examed. Bioconversion pattern can be categorized into three types according to absorption spectra characteristics. The same pattern of the value of ${\Delta}E$ estimated by color differencemeter was also observed. Conversion rate by S. epidermidis was faster than other bacterial species. It took 16 hour for S. epidermidis to convert pigment at $37^{\circ}C$. Gardenia jasminoides yellow pigment and conversion pigment were completely separated by Amberlite XAD column chromatography with $H_2O-MeOH$ solvent system. Storage stability of the conversion pigment was better than Gardenia jasminoides yellow pigment.

  • PDF

Adsorption Treatment of Petroleum Oil on Aqueous Phase (수용액중에 함유된 석유화합물들의 흡착처리에 관한 연구)

  • Lee, T.H.;Son, B.C.;Lee, S.B.;Kim, l.H.
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1992
  • The adsorption amount of petroleum oil on XAD-4, XAD-7 and replacement adsorbents as rice bran, rice straw and sawdust were studied by using batch method measured in the optimum adsorption condition. The adsorption capacity of rice bran and rice straw of petroleum oil were excellent as well as adsorption ability about 50% of XAD resins and adsorption capacity of their replacement adsorbents were increased with optimum condition that pyrolysis time was 30 min. at $200^{\circ}C$. Adsorption ability of sawdust was very weak on the 30% MeOH aqueous medium but adsorption ability was range of about 50% of XAD resin's adsorption capacity on the 0.5M NaCl aqueous medium. Adsorption ability of rice bran and rice straw showed the same adsorption capacity even if difference external structure. Therefore, showing that rice bran and rice straw were have to good adsorption ability as replacement adsorbent for XAD resins.

  • PDF

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF