• Title/Summary/Keyword: Alzheimer's disease(AD)

Search Result 452, Processing Time 0.026 seconds

Calcium Signal Dependent Cell Death by Presenilin-2 Mutation in PC12 Cells and in Cortical Neuron from Presenilin-2 Mutation Transgenic Mice

  • Lee, Sun-Young;Song, Youn-Sook;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.145-145
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid ${\beta}$ peptide (A${\beta}$) and cause of neuronal cell death in the brain of patient of AD. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated.(omitted)

  • PDF

Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells (BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구)

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, In Sik;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that can be described by the occurrence of dementia due to a decline in cognitive function. The disease is characterized by the formation of extracellular and intracellular amyloid plaques. Amyloid beta (Aβ) is a hallmark of AD, and microglia can be activated in the presence of Aβ. Activated microglia secrete pro-inflammatory cytokines. Furthermore, S100A9 is an important innate immunity pro-inflammatory contributor in inflammation and a potential contributor to AD. This study examined the effects of metformin and α-LA on the inflammatory response and NLRP3 inflammasome activation in Aβ- and S100A9-induced BV-2 microglial cells. Metformin and α-LA attenuated inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, metformin and α-LA inhibited the phosphorylation of JNK, ERK, and p38. They activated the nuclear factor kappa B (NF-κB) pathway and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, metformin and α-LA reduced the marker levels of the M1 phenotype, ICAM1, whereas the M2 phenotype, ARG1, was increased. These findings suggest that metformin and α-LA are therapeutic agents against the Aβ- and S100A9-induced neuroinflammatory responses.

Effects of Ramulus et Uncus Uncariae DM fraction on CT105-injuried Neuronal Cells (조구슬 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향)

  • Jang Hyun Ho;Choi Hyuk;Yang Hyun Duk;Kim Sang Tae;Kim Tae Heon;Kang Hyung Won;Lyu Young Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1810-1820
    • /
    • 2004
  • The purpose of this study was to estimate the effects of Ramulus et Uncus Uncariae DM fraction on CT105-injuried neuronal cells. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by REUD. Findings from our experiments have shown that REUD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of REUD(>50㎍/㎖ for 12 hours) partially prevented CT105-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. REUD(>50㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In REUD group, the apoptosis in the nervous system was inhibited, the repai: against the degeneration of Neuroblastoma cells by CT105 expression was promoted. Base on these findings, REUD may be beneficial for the treatment of AD.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice

  • Lee, Kang Pa;Choi, Nan Hee;Kim, Hyun-Soo;Ahn, Sanghyun;Park, In-Sik;Lee, Dea Won
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: One of the mechanisms considered to be prevalent in the development of Alzheimer's disease (AD) is hyper-stimulation of microglia. Black chokeberry (Aronia melanocapa L.) is widely used to treat diabetes and atherosclerosis, and is known to exert anti-oxidant and anti-inflammatory effects; however, its neuroprotective effects have not been elucidated thus far. MATERIALS/METHODS: We undertook to assess the anti-inflammatory effect of the ethanolic extract of black chokeberry friut (BCE) in BV2 cells, and evaluate its neuroprotective effect in the lipopolysaccharide (LPS)-induced mouse model of AD. RESULTS: Following stimulation of BV2 cells by LPS, exposure to BCE significantly reduced the generation of nitric oxide as well as mRNA levels of numerous inflammatory factors such as inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin 1 beta ($IL-1{\beta}$), and tumor necrosis factor alpha ($TNF-{\alpha}$). In addition, AD was induced in a mouse model by intraperitoneal injection of LPS ($250{\mu}g/kg$), subsequent to which we investigated the neuroprotective effects of BCE (50 mg/kg) on brain damage. We observed that BCE significantly reduced tissue damage in the hippocampus by downregulating iNOS, COX-2, and $TNF-{\alpha}$ levels. We further identified the quinic acids in BCE using liquid chromatography-mass spectrometry (LCMS). Furthermore, we confirmed the neuroprotective effect of BCE and quinic acid on amyloid beta-induced cell death in rat hippocampal primary neurons. CONCLUSIONS: Our findings suggest that black chokeberry has protective effects against the development of AD.

Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity

  • Chih-Hsin Lin;Yu-Shao Hsieh;Ying-Chieh Sun;Wun-Han Huang;Shu-Ling Chen;Zheng-Kui Weng;Te-Hsien Lin;Yih-Ru Wu;Kuo-Hsuan Chang;Hei-Jen Huang;Guan-Chiun Lee;Hsiu Mei Hsieh-Li;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.127-138
    • /
    • 2023
  • Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogenactivated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/ Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

Effect of Reserpine on the Behavioral Defects, Aβ-42 Deposition and NGF Metabolism in Tg2576 Transgenic Mouse Model for Alzheimer's Disease (알츠하이머질환 모델동물인 Tg2576마우스의 행동, Aβ-42 침적, 신경성장인자 대사에 미치는 reserpine의 영향)

  • Go, Jun;Choi, Sun Il;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.812-824
    • /
    • 2013
  • Reserpine, an anti-hypertensive drug, is able to positively modulate several phenotypes associated with $A{\beta}$ toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD). We investigated into the therapeutic effects of reserpine on mammalian neurodegenerative disorders, and found that significant alteration of the key factors influencing AD was detected in Tg2576 mice after reserpine treatment for 30 days. The aggressive behavior of Tg2576 mice was significantly improved upon reserpine treatment, whereas their social contact was consistently maintained. Furthermore, the levels of $A{\beta}$-42 peptide in the hippocampus of the brain and blood serum were lower in the reserpine-treated group than in the vehicle-treated group. Among g-secretase components, the expression levels of PS-2, Pen-2, and APH-1 were slightly lower in reserpine-treated Tg2576 mice, although a significant change in nicastrin (NCT) expression was not detected. Furthermore, the serum level of nerve growth factor (NGF) increased in reserpine-treated Tg2576 mice compared with vehicle-treated mice. Among down-stream effectors of the NGF receptor TrkA signaling pathway, reserpine treatment induced elevation of TrkA phosphorylation and reduction of ERK phosphorylation. In addition, in the NGF receptor $p75^{NTR}$ signaling pathway, the expression levels of $p75^{NTR}$ and Bcl-2 were enhanced in reserpine-treated Tg2576 mice compared with vehicle-treated mice, whereas the expression level of RhoA declined. Overall, these results suggest that reserpine can help relieve AD pathogenesis in Tg2576 mice through downregulation of $A{\beta}$-42 deposition, alteration of ${\gamma}$-secretase components, and regulation of NGF metabolism.

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell (Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.327-332
    • /
    • 2019
  • Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.