• Title/Summary/Keyword: Alveolar socket preservation

Search Result 34, Processing Time 0.023 seconds

EFFECT OF GELATIN SPONGY AND PLATELET RICH PLASMA ON RIDGE PRESERVATION AND BONE FORMATION AFTER EXTRACTION (발치 후 젤라틴 스폰지와 혈소판 농축 혈장이 치조제 보존 및 골 형성에 미치는 영향)

  • Kim, Young-Seok;Kwon, Kyung-Hwan;Cha, Soo-Yean;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.3
    • /
    • pp.238-247
    • /
    • 2005
  • The placement of different graft materials and/or the use of occlusive membranes to cover the extraction socket entrance are techniques aimed at reducing alveolar ridge resorption and enhancing bone formation. However, in spite of its clinical advantage, the use of graft materials in fresh extraction socket has been questioned because particles of the grafted material have been found in alveolar sockets with fibrous union. The purposes of this study were to evaluate whether alveolar ridge resorption following tooth extraction could be reduced and bone formation could be enhanced by the application of absorbable gelatin spongy or gelatin spongy soaked with platelet rich plasma(PRP) used as a space filler in clinical and radiographic aspects. Eighty patients who were scheduled for extraction of both third molars were participated and carried out by one experienced surgeon. Following extraction of teeth, one extracted socket were treated with gelatin spongy as an experimental group A and the other were treated with gelatin spongy and PRP as an experimental group B. The routine extracted socket were healed without any treatment as a control group. From the period of extraction to 12 weeks postoperatively, we examined the clinical course and radiographic evaluation on socket at regular interval. Both experimental groups showed faster wound healing process than control clinically. Vertical gingival height of the extraction socket were less changed statistically in both experimental groups than control. The horizontal width change of the extraction socket were not significant statistically in any group. Radiographic changes of the alveolar bone height were less changed in both experimental groups and bone density were showed higher than control. There were a little difference between experimental group A and B. In conclusion, absorbable gelatin sponge and with PRP were considered as having preservation effects of extraction socket and stimulation of bone formation process after extraction.

Various autogenous fresh demineralized tooth forms for alveolar socket preservation in anterior tooth extraction sites: a series of 4 cases

  • Kim, Eun-Suk;Lee, In-Kyung;Kang, Ji-Yeon;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.27.1-27.7
    • /
    • 2015
  • The aim of this study was to evaluate the clinical relevance of autogenous fresh demineralized tooth (Auto-FDT) prepared at chairside immediately after extraction for socket preservation. Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. Extraction sockets were filled with these materials and dental implants were installed immediately or after a delay. A panoramic radiograph and a conebeam CT were taken. In two cases, tissue samples were taken for histologic examination. Vertical and horizontal maintenance of alveolar sockets showed some variance depending on the Auto-FDT and barrier membrane types used. Radiographs showed good bony healing. Histologic sections showed that it guided good new bone formation and resorption pattern of the Auto-FDT. This case series shows that Auto-FDT prepared at chairside could be a good material for the preservation of extraction sockets. This study will suggest the possibility of recycling autogenous tooth after immediate extraction.

Improving oral rehabilitation through the preservation of the tissues through alveolar preservation

  • Afrashtehfar, Kelvin Ian;Kurtzman, Gregori Michael;Mahesh, Lanka
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.174-178
    • /
    • 2012
  • When performing a tooth extraction, imminent collapse of the tissue by resorption and remodeling of the socket is a natural occurrence. The procedure for the preservation of the alveolar ridge has been widely described in the dental literatures and aims to maintain hard and soft tissues in the extraction site for optimal rehabilitation either with conventional fixed or removable prosthetics or implant-supported prosthesis.

Alveolar socket preservation with demineralised bovine bone mineral and a collagen matrix

  • Maiorana, Carlo;Poli, Pier Paolo;Deflorian, Matteo;Testori, Tiziano;Mandelli, Federico;Nagursky, Heiner;Vinci, Raffaele
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.194-210
    • /
    • 2017
  • Purpose: The aim of the present study was to evaluate the healing of post-extraction sockets following alveolar ridge preservation clinically, radiologically, and histologically. Methods: Overall, 7 extraction sockets in 7 patients were grafted with demineralised bovine bone mineral and covered with a porcine-derived non-crosslinked collagen matrix (CM). Soft tissue healing was clinically evaluated on the basis of a specific healing index. Horizontal and vertical ridge dimensional changes were assessed clinically and radiographically at baseline and 6 months after implant placement. For histological and histomorphometric analysis, bone biopsies were harvested from the augmented sites during implant surgery 6 months after the socket preservation procedure. Results: Clinically, healing proceeded uneventfully in all the sockets. A trend towards reduced horizontal and vertical socket dimensions was observed from baseline to the final examination. The mean width and height of resorption were 1.21 mm (P=0.005) and 0.46 mm (P=0.004), respectively. Histologically, residual xenograft particles ($31.97%{\pm}3.52%$) were surrounded by either newly formed bone ($16.02%{\pm}7.06%$) or connective tissue ($50.67%{\pm}8.42%$) without fibrous encapsulation. The CM underwent a physiological substitution process in favour of well-vascularised collagen-rich connective tissue. Conclusions: Socket preservation using demineralised bovine bone mineral in combination with CM provided stable dimensional changes of the alveolar ridge associated with good reepithelialisation of the soft tissues during a 6-month healing period.

Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series

  • Kim, Young-Kyun;Yun, Pil-Young;Um, In-Woong;Lee, Hyo-Jung;Yi, Yang-Jin;Bae, Ji-Hyun;Lee, Junho
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.521-527
    • /
    • 2014
  • This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity.

Compromised extraction sockets: a new classification and prevalence involving both soft and hard tissue loss

  • Kim, Jung-Ju;Amara, Heithem Ben;Chung, Inna;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.2
    • /
    • pp.100-113
    • /
    • 2021
  • Purpose: Previous studies have solely focused on fresh extraction sockets, whereas in clinical settings, alveolar sockets are commonly associated with chronic inflammation. Because the extent of tissue destruction varies depending on the origin and the severity of inflammation, infected alveolar sockets may display various configurations of their remaining soft and hard tissues following tooth extraction. The aim of this study was to classify infected alveolar sockets and to provide the appropriate treatment approaches. Methods: A proposed classification of extraction sockets with chronic inflammation was developed based upon the morphology of the bone defect and soft tissue at the time of tooth extraction. The prevalence of each type of the suggested classification was determined retrospectively in a cohort of patients who underwent, between 2011 and 2015, immediate bone grafting procedures (ridge preservation/augmentation) after tooth extractions at Seoul National University Dental Hospital. Results: The extraction sockets were classified into 5 types: type I, type II, type III, type IV (A & B), and type V. In this system, the severity of bone and soft tissue breakdown increases from type I to type V, while the reconstruction potential and treatment predictability decrease according to the same sequence of socket types. The retrospective screening of the included extraction sites revealed that most of the sockets assigned to ridge preservation displayed features of type IV (86.87%). Conclusions: The present article classified different types of commonly observed infected sockets based on diverse levels of ridge destruction. Type IV sockets, featuring an advanced breakdown of alveolar bone, appear to be more frequent than the other socket types.

Factors Affecting Primary Stability on Sites of Alveolar Ridge Preservation Using Porcine-derived Bone Minerals

  • Lee, Su-Yeon;Lee, Young;Choi, Seong-Ho;Lee, Dong-Woon
    • Journal of Korean Dental Science
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Purpose: The alveolar ridge preservation (ARP) is widely conducted for implant placement. However, experimental results using deproteinized porcine bone mineral (DPBM) have been scarce. This retrospective study evaluated factors affecting the primary stability of implants in an area where ARP was performed using DPBM. Materials and Methods: Thirty-eight patients were divided into two groups based on the primary stability, with torque value of 30 Ncm as borderline. To determine the factors that affect the primary stability of implants, we collected data from patients' medical records including age, sex, reentry time, socket location, remaining bone wall at the time of extraction, and type of collagen membrane, as well as from radiographs and histomorphometric analysis. Result: The results showed statistically significant difference for the remaining extraction socket wall (P=0.014), residual graft (P=0.029), and fibrovascular tissue (P=0.02) between the two groups. There was an insignificant tendency toward the time of reentry surgery (P=0.052) and location (P=0.077). All implants placed in sites using DPBM functioned well up to 3 years. Conclusion: Within the limitations of the present study, extraction socket wall, residual graft, and fibrovascular tissue can affect the primary stability at the time of implant placement on grafted sites using DPBM and collagen membranes. In addition, reentry time and locations can be considered. In future studies, comparative experiments in quantified models will be required to supporting the findings.

A clinico-radiographic and histomorphometric analysis of alveolar ridge preservation using calcium phosphosilicate, PRF, and collagen plug

  • Tarun Kumar, AB;Chaitra, N.T.;Gayatri Divya, PS;Triveni, M.G.;Mehta, Dhoom Singh
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.32.1-32.7
    • /
    • 2019
  • Background: Tooth extraction commonly leads to loss of residual alveolar ridge, thus compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. Clinico-radiographic measurements of hard and soft tissues were taken at baseline and 6 months post-grafting. Results: There were no significant changes in the radiographic and soft tissue parameters while significant changes in hard tissue parameters with 1.9 mm (p = 0.013) gain in mid-buccal aspect and 1.1 mm (p = 0.019) loss in horizontal bone width were observed. The histomorphometric evaluation depicted the vital bone volume of 54.5 ± 16.76%, non-mineralized tissue 43.50 ± 15.80%, and residual material 2.00 ± 3.37%. Conclusion: The implants placed in these preserved ridges presented 100% success rate with acceptable stability after a 1-year follow-up, concluding calcium phosphosilicate is a predictable biomaterial in alveolar ridge preservation.

Socket Preservation Utilizing Modified Free Connective Tissue Graft for Primary Closure : Wing Graft (발치와 보전술식시 변형 유리 결체조직 이식술을 이용한 일차 페쇄술식 : 익이식술)

  • Min, Kyoung-Man;Han, Soo-Boo;Lee, Chul-Woo;Kim, Dong-Kyun;Leem, Sang-Hoon
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.3
    • /
    • pp.409-418
    • /
    • 1998
  • The socket preservation technique is very effective in preventing alveolar ridge collapse after tooth extraction. Many technigues have been proposed for the primary closure of the flap and we tested a new graft design, "wing graft", which is a modification of free connective tissue graft in this case report. With this technique, primary closure was achieved without shallowing the vestibule. Additionally some vertical ridge augmentation effect could be observed and therefore good esthetic and functional results were obtained from this technique even in the case where severe bone loss and gingival recession was present. Finally we observed good healing appearance in the donor site after 2weeks. The results from this report suggest that this "wing graft" can be used successfully as an adjunctive procedure with socket preservation technique.

  • PDF

Comparative, randomized, double-blind clinical study of alveolar ridge preservation using an extracellular matrix-based dental resorbable membrane in the extraction socket

  • Chang, Hyeyoon;Kim, Sulhee;Hwang, Jin wook;Kim, Sungtae;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Lee, Jong-Ho;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.3
    • /
    • pp.165-173
    • /
    • 2017
  • Purpose: The aim of this study was to radiographically and clinically compare the effect of extracellular matrix (ECM) membranes on dimensional alterations following a ridge preservation procedure. Methods: One of 2 different ECM membranes was applied during a ridge preservation procedure. A widely used ECM membrane (WEM; Bio-Gide, Geistlich Biomaterials, Wolhusen, Switzerland) was applied in the treatment group and a newly developed ECM membrane (NEM; Lyso-Gide, Oscotec Inc., Seongnam, Korea) was applied in the control group. Cone-beam computed tomography (CBCT) scans and alginate impressions were obtained 1 week and 6 months after the ridge preservation procedure. Results were analyzed using the independent t-test and the nonparametric Mann-Whitney U test. Results: There were no significant differences between the ECM membranes in the changes in the dimension, width, and height of the extraction socket or the quantity of bone tissue. Conclusions: The NEM showed comparable clinical and radiographic results to the WEM following the ridge preservation procedure.