• Title/Summary/Keyword: Alveolar bone remodeling

Search Result 68, Processing Time 0.03 seconds

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

  • Lee, Eun-Young;Kim, Eun-Suk;Kim, Kyung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.103-110
    • /
    • 2014
  • Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction.

Apelin-APJ axis inhibits TNF-alpha-mediated expression of genes involved in the inflammatory response in periodontal ligament cells

  • Lee, Gyuseok;Song, Won-Hyun;Kim, Su-Jin;Kim, Young-Gwon;Ryu, Je-Hwang
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.182-190
    • /
    • 2019
  • Periodontitis is an inflammatory disease of the supportive tissues surrounding the teeth, and is characterized by irreversible destruction of the gingiva, periodontal ligament (PDL), and alveolar bone, which results in the loss of teeth. In the present study, we elucidated the correlation between periodontitis and apelin (APLN), an adipokine and a regulatory peptide, respectively, which are involved in inflammation and bone remodeling. The expression of APLN is negatively correlated with periodontitis progression in gingival tissue. In addition, treatment with TNF-α downregulated the expression of APLN in PDL cells and gingival fibroblasts, indicating the protective role played by APLN against periodontitis progression. The overexpression of APLN or treatment with exogenous APLN suppressed the TNF-α-mediated catabolic gene expression of MMP1, IL6, and PTGS2 in PDL cells. Moreover, the inhibition of the APLNA-PJ axis by ML221, an APJ inhibitor, induced catabolic gene expression in PDL cells. Thus, the results of this study provided evidence to support APLN as a regulatory factor of the inflammatory response during periodontitis.

Odontogenic Ameloblast-Associated Protein (Odam) Plays Crucial Roles in Osteoclast Differentiation via Control of Actin Ring Formation

  • Lee, Hye-Kyung;Park, Joo-Cheol
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.74-81
    • /
    • 2015
  • Purpose: In osteoclast differentiation, actin-rich membrane protrusions play a crucial role in cell adhesion. Odontogenic ameloblast-associated protein (Odam) contributes to cell adhesion by inducing actin rearrangement. Odam-mediated RhoA activity may play a significant role in multinucleation of osteoclasts. However, the precise function of Odam in osteoclast cell adhesion and differentiation remains largely unknown. Here, we identify a critical role for Odam in inducing osteoclast adhesion and differentiation. Materials and Methods: The expression of Odam in osteoclasts was evaluated by immunohistochemistry. Primary mouse bone marrow and RAW264.7 cells were used to test the cell adhesion and actin ring formation induced by Odam. Result: Odam was expressed in osteoclasts around alveolar bone. Odam transfection induced actin filament rearrangement and cell adhesion compared with the control or collagen groups. Overexpression of Odam promoted actin stress fiber remodeling and cell adhesion, resulting in increased osteoclast fusion. Conclusion: These results suggest that Odam expression in primary mouse osteoclasts and RAW264.7 cells promotes their adhesion, resulting in the induction of osteoclast differentiation.

Study of a "wing-type" implant on stress distribution and bone resorption at the alveolar crest

  • Park, Jong-Wook;Kim, Sin-Guen;Choi, Dong-Won;Choi, Mi-Ra;Yoon, Youn-Jin;Park, Jun-Woo;Choi, Dong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.337-342
    • /
    • 2012
  • Objectives: Implants connect the internal body to its external structure, and is mainly supported by alveolar bone. Stable osseointegration is therefore required when implants are inserted into bone to retain structural integrity. In this paper, we present an implant with a "wing" design on its area. This type of implant improved stress distribution patterns and promoted changes in bone remodeling. Materials and Methods: Finite element analysis was performed on two types of implants. One implant was designed to have wings on its cervical area, and the other was a general root form type. On each implant, tensile and compressive forces ($30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$) were loaded in the vertical direction. Stress distribution and displacement were subsequently measured. Results: The maximum stresses measured for the compressive forces of the wing-type implant were $21.5979N/m^2$, $25.1974N/m^2$, $29.7971N/m^2$, and $32.3967N/m^2$ when $30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$ were loaded, respectively. The maximum stresses measured for the root form type were $23.0442N/m^2$, $26.9950N/m^2$, $30.7257N/m^2$, and $34.5584N/m^2$ when $30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$ were loaded, respectively. Thus, the maximum stresses measured for the tensile force of the root form implant were significantly higher (about three times greater) than the wing-type implant. The displacement of each implant showed no significant difference. Modifying the design of cervical implants improves the strength of bone structure surrounding these implants. In this study, we used the wing-type cervical design to reduce both compressive and tensile distribution forces loaded onto the surrounding structures. In future studies, we will optimize implant length and placement to improve results. Conclusion: 1. Changing the cervical design of implants improves stress distribution to the surrounding bone. 2. The wing-type implant yielded better results, in terms of stress distribution, than the former root-type implant.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

Inhibition of mRANKL Expression by Doxycycline in Rat Periodontal Ligament Cells (백서 치주인대세포에서 Doxycycline에 의한 mRANKL 발현 억제)

  • Cho, Kwan-Pyo;Cui, De-Zhe;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.335-344
    • /
    • 2006
  • Osteoblast or bone marrow stromal cell-derived RANKL is the major effector molecule essential for osteoclastogenesis. Previous studies have shown that tetracyclines have beneficial therapeutic effects in the prevention and treatment of inflammatory bone disease including periodontal disease. Periodontal ligament cells are thought not only to play an important role in the progression of periodontal disease, but to play an important role in alveolar bone remodeling. Previous studies indicated that receptor activation of nuclear factor $\kappa\;B$ ligand (RANKL) and osteoprotegerin (OPG) are expressed in periodontal ligament cells by pro-inflammatory cytokine, such as $IL-1{\beta}$ and $TNF-{\alpha}$. This study was designed to investigate the inhibitory effect of doxycycline on RANKL and OPG mRNA in rat periodontal ligament cells induced by $IL-1{\beta}$ (1 ng/ml). The results are as follows; 1. MTT assay showed that doxycycline at the concentration of $1-50\;{\mu}g/m{\ell}$ didn't result in statistically significant cell death at day 1 and 3. 2. RANKL mRNA expression was increased to 2.6 folds by $IL-1{\beta}$. When cells were treated with doxycycline ($50{\mu}g/m{\ell}$), $IL-1{\beta}$ -induced mRANKL expression was reduced by 33%. In contrast to RANKL, OPG mRNA expression was not inhibited by pre-treatment with doxycycline. These results suggest that doxycycline decrease the expression of mRANKL resulting in regulation of osteoclastogenesisp in rat periodontal ligament cells.

Periodontal Tissue Response Following Different Types of Fixed Retainers in Young Adult Dogs (수종의 고정성 보정장치에 따른 유성견의 치주조직 반응)

  • Jo, Myung-Hun;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.85-95
    • /
    • 2001
  • The purpose of this study was to evaluate the material for fixed type retainer, allowing physiologic tooth movement. and proper remodeling or periodontal tissue during retention period. The Present study was Performed to observe the histologic changes of periodontal tissue after application of different types of fixed type retainer after orthodontic tooth movement in young adult dogs. For this study, 4 young adult dogs were used as a experimental animal and experimental group was divided into three groups : experimental group 1 contained right side maxillayy third incisors and canines, experimental group 2 contained contralateral teeth of same animals, and control group contained mandibular premolars. And each dogs were applied the 4 different types of fixed type retainer to experimental group 1. The experimental teeth were ligated on the Sentalloy closed coil $spring^{\circledR}$(Tomy Co., Japan) from maxillary third incisors and canines and applied orthodontic force at initial 200gm-forced during 1 week. All the experimental animals were sacrificed on the 3rd week after the orthodontic teeth movement and then the specimens were taken, fixed in formalin, embeded in parafin, sectioned $6-8{\mu}m$ in thickness and stained with Hematoxylin-Eosin staining, and Masson's trichrome staining method. Examined under the light microscopy The following results were observed. 1. There were observed that decreased infiltration of giant tells in pressure side and increased the new bone forming in tension side on the specimen of 6-stranded 0.0195' $Respond^{\circledR}$(G&H Co., U.S.A.) group. Periodontal ligament fibers were much compressed or elongated in 3-stranded 0.018', 0.020' $Dentaflex^{\circledR}$(Dentarum Co., Germany), and Superbond $C&B^{\circledR}$(Sun Medical Co., Japan) groups. 2. In experimental group 1, necrotic bone inside the alveolar bone of pressure side, forming of the sharpey's fiber in osteoid tissue, and remodeling of the periodontal ligament were observed in all animals. 3. In experimental group 2, it was observed that the amount of bone resorption was equal or decreased in pressure side, and increased new bone forming and significantly decreased infiltration of giant cell than the experimental group 1. By this results, it considered that 6-stranded $Respond^{\circledR}$(G&H Co., U.S.A.) wire was the most useful material allowing early periodontal tissue remodeling.

  • PDF

Bone-level implants placed in the anterior maxilla: an open-label, single-arm observational study

  • Gao, EnFeng;Hei, Wei-Hong;Park, Jong-Chul;Pang, KangMi;Kim, Sun Kyung;Kim, Bongju;Kim, Soung-Min;Lee, Jong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.5
    • /
    • pp.312-327
    • /
    • 2017
  • Purpose: This study assessed marginal bone remodeling and soft tissue esthetics after the loading of single bone-level implants in the anterior maxilla. Methods: An open, single-arm observational clinical trial with 3 years of follow-up was performed, including 22 implants. The patients presented with a single tooth gap in the anterior maxilla (tooth positions 14-24), with natural or restored adjacent teeth. An implant was placed at least 8 weeks post-extraction and healed submerged for 6 weeks. After the second-stage operation, a fixed provisional prosthesis was provided. The final restoration was placed 6 months after the provisional restoration. The time of the provisional crown connection was considered to be the baseline in this study. Esthetic parameters and the marginal bone level were assessed at 6, 12, 24, and 36 months. Results: All implants were well integrated in the bone. A statistically significant increase was found in the mean implant stability quotient between the time of the provisional prosthesis and the time of the final prosthesis. Most implants (95.5%) revealed marginal bone resorption (<0.5 mm), and just 1 implant (4.5%) showed a change of 2.12 mm from baseline to 36 months (mean $0.07{\pm}0.48mm$), while the crestal bone level decreased significantly, from $2.34{\pm}0.93mm$ at baseline to $1.70{\pm}1.10mm$ at 36 months. The facial gingival margin and papilla were stable and the esthetic scores indicated high patient and dentist satisfaction. Conclusions: Platform-switching bone-level implants placed in maxillary single-tooth gaps resulted in successful osseointegration with minimal marginal bone resorption. The peri-implant soft tissue was also esthetically satisfying and stable.

Implant Supported Overdenture using Locator$^{(R)}$ System on Mandibular Edentulous Patient (하악 무치악 환자에서 Locator$^{(R)}$를 이용한 임플란트 피개의치 수복 증례)

  • Yu, Jung-Hyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.397-406
    • /
    • 2012
  • Loss of tooth results in remodeling and resorption of surrounding alveolar bone which causes atrophic edentulous ridge and gradually decreasing gingival attachment. As a result, edentulous patients face difficulty in using dentures due to pain, decrease of support, decline of masticatory efficiency of complete denture. To improve this, overdenture with implant in the mandible and attachment are considered as a treatment of choice as a favorable treatment. In this case, a patient with edentulous ridge for long period is rehabilitated by complete denture in maxilla and implant overdenture using Locator$^{(R)}$ attachment in mandible.

The influence of magnet on tissue healing after immediate implantation in fresh extraction sites in dogs (성견에서 발치 후 즉시 식립 임플란트에 설치한 자석이 주위 조직에 미치는 영향)

  • Yu, Seok-Min;Cho, In-Ho;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.435-444
    • /
    • 2009
  • Statement of problem: The clinical use of electric and electomagnetic fields for fracture healing applications began in the early 1970s. Since then, several technologies have been developed and shown to promote healing of fractures. Developments of these devices have been aided in recent years by basic research and several well controlled clinical trials not only in the medical field but in dentistry. Purpose: The purpose of this study was to compare alveolar bone reduction following immediate implantation using implants onto which magnets were attached in fresh extracted sockets. Material and methods: Four mongrel dogs were involved. Full buccal and lingual mucoperiosteal flaps were elevated and third and fourth premolars of the mandible were removed. Implants with magnets and implants without magnets were installed in the fresh extracted sockets and after 3 months of healing the animals were sacrificed. The mandibles were dissected and each implant sites were sampled and processed for histological examination. Results: The marginal gaps that were present between the implant and walls of the sockets at the implantation stage disappeared in both groups as a result of bone fill and resorption of the bone crest. The buccal bone crests were located apical of its lingual counterparts. At the 12 week interval the mean of marginal bone resorption in the control group was significantly higher than that of the magnet group. The majority of specimens in magnet group presented early bone formation and less resorption of the buccal marginal bone compared to the control group. Conclusion: Within the limitations of this study, it could be concluded that implants with magnets attached in the early stages of implantation may provide more favorable conditions for early bone formation and reduce resorption and remodeling of marginal bone.