• Title/Summary/Keyword: Alveolar bone remodeling

Search Result 68, Processing Time 0.02 seconds

Improving oral rehabilitation through the preservation of the tissues through alveolar preservation

  • Afrashtehfar, Kelvin Ian;Kurtzman, Gregori Michael;Mahesh, Lanka
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.174-178
    • /
    • 2012
  • When performing a tooth extraction, imminent collapse of the tissue by resorption and remodeling of the socket is a natural occurrence. The procedure for the preservation of the alveolar ridge has been widely described in the dental literatures and aims to maintain hard and soft tissues in the extraction site for optimal rehabilitation either with conventional fixed or removable prosthetics or implant-supported prosthesis.

Effect of alendronate on bone remodeling around implant in the rat

  • Park, Ran;Kim, Jee-Hwan;Choi, Hyunmin;Park, Young-Bum;Jung, Han-Sung;Moon, Hong-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.374-381
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate the effect of alendronates on bone remodeling around titanium implant in the maxilla of rats. MATERIALS AND METHODS. The maxillary first molars were extracted and customized-titanium implants were placed immediately in thirty male Sprague-Dawley rats. The rats were divided into experimental (bisphosphonate) group and control group. At 4 weeks after implantation, the rats in the bisphosphonate group were subcutaneously injected with alendronate three times a week for 6 weeks where as the rats in control group were injected with saline. The rats were sacrificed at 1, 2, 3, 4, or 6 weeks after starting of injection and maxillary bones were collected subsequently. Alveolar bone remodeling around the implants were evaluated by radiographic and histologic analysis. Microarray analysis and immunohistomorphologic analysis were also performed on one rat, sacrificed at 6 weeks after starting of injection, from each group. Statistical analysis was performed using repeated measures analysis of variance and independent t test at a significance level of 5%. RESULTS. There was no statistically significant difference in the bone area (%) around implant between the bisphosphonate group and the control group. However, the amount of empty lacuna was significantly increased in the bisphosphonate group, especially in the rats sacrificed at 4 weeks after starting of injection compared to that of the corresponding control group. The bisphosphonate group showed the same level of TRAP positive cell count, osteocalcin and angiopoietin 1 as the control group. CONCLUSION. Alendronate may not decrease the amount of osteoclast. However, the significantly increased amount of empty lacuna in the bisphosphonate group may explain the suppression of bone remodeling in the bisphosphonate group.

Effect of nicotine on orthodontic tooth movement and bone remodeling in rats

  • Lee, Sung-Hee;Cha, Jung-Yul;Choi, Sung-Hwan;Kim, Baek-il;Cha, Jae-Kook;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.282-292
    • /
    • 2021
  • Objective: To quantitatively analyze the effect of nicotine on orthodontic tooth movement (OTM) and bone remodeling in rats using micro-computed tomography and tartrate-resistant acid phosphatase immunostaining. Methods: Thirty-nine adult male Sprague-Dawley rats were randomized into three groups: group A, 0.5 mL normal saline (n = 9, 3 per 3, 7, and 14 days); group B, 0.83 mg/kg nicotine (n = 15, 5 per 3, 7, and 14 days); and group C, 1.67 mg/kg nicotine (n = 15, 5 per 3, 7, and 14 days). Each animal received daily intraperitoneal injections of nicotine/saline from the day of insertion of identical 30-g orthodontic force delivery systems. A 5-mm nickel-titanium closed-coil spring was applied between the left maxillary first molar (M1) and the two splinted incisors. The rate of OTM and volumetric bone changes were measured using micro-computed tomography. Osteoclasts were counted on the mesial alveolar bone surface of the distobuccal root of M1. Six dependent outcome variables, including the intermolar distance, bone volume fraction, bone mineral density, trabecular thickness, trabecular volume, and osteoclast number, were summarized using simple descriptive statistics. Nonparametric Kruskal-Wallis tests were used to evaluate differences among groups at 3, 7, and 14 days of OTM. Results: All six dependent outcome variables showed no statistically significant among group-differences at 3, 7, and 14 days. Conclusions: The findings of this study suggest that nicotine does not affect OTM and bone remodeling, although fluctuations during the different stages of OTM in the nicotine groups should be elucidated in further prospective studies.

Biomechanical adaptation of orthodontic tooth movement (임상가를 위한 특집 2 - 교정력에 의한 치아이동과 Biomechanical adaptation)

  • Lee, Syng-Ill
    • The Journal of the Korean dental association
    • /
    • v.51 no.3
    • /
    • pp.138-147
    • /
    • 2013
  • Orthodontic tooth movement is a unique process which tooth, solid material is moving into hard tissue, bone. Orthodontic force in general provides the strain to the PDL and alveolar bone, which in turn generates the interstitial fluid flow(in detail, fluid flow in PDL and canaliculi). As a results of matrix strain, periodontal ligament cells and bone cells are deformed, releasing variety of cytokines, chemokines, and growth factors. These molecules lead to the orthodontic tooth movement(OTM). In these inflammation and tissue remodeling sites, all of the cells could closely communicate with one another, flowing the information for tissue remodeling. To accelerate the rate of OTM in future, local injection of single growth factor(GF) or a combination of multiple GFs in the periodontal tissues might intervene to stimulate the rate of OTM. Corticotomy is effective and safe to accelerate OTM.

Evaluation of regeneration after the application of 2 types of deproteinized bovine bone mineral to alveolar bone defects in adult dogs

  • Lee, Dajung;Lee, Yoonsub;Kim, Sungtae;Lee, Jung-Tae;Ahn, Jin-soo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.5
    • /
    • pp.370-382
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the preclinical results of 2 types of commercially available deproteinized bovine bone mineral (DBBM) when applied to alveolar bone defects in dogs. Methods: This study was conducted using 6 beagles. Alveolar defects in the mandible were formed and filled with 2 DBBMs produced by a similar procedure. Defects were randomly assigned to be filled using DBBM 1 or 2. All defects were covered with a collagen membrane and had a healing period of 12 weeks. After the dogs were sacrificed, histological, histomorphometric, and linear/volumetric analyses were performed. Results: Both DBBM groups showed similar histological findings, demonstrating that bone remodeling had occurred and new bone had formed. The residual bone particles were surrounded by newly formed vital bone. In the histomorphometric analysis, the ratio of the area of vital bone and residual bone substitute in DBBM 2 (38.18% and 3.47%, respectively) was higher than that of DBBM 1 (33.74% and 3.41%, respectively), although the difference was not statistically significant. There were also no statistically significant differences between both groups in linear and volumetric analyses using micro-computed tomography scans and digitized images of dental casts. Conclusions: In the present study, DBBM 1and 2, which were produced by similar processes, showed similar results in histological, histomorphometric, and volumetric analyses. Further studies are needed to identify more specific differences between the 2 DBBMs.

Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series

  • Kim, Young-Kyun;Yun, Pil-Young;Um, In-Woong;Lee, Hyo-Jung;Yi, Yang-Jin;Bae, Ji-Hyun;Lee, Junho
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.521-527
    • /
    • 2014
  • This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity.

Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs

  • Lee, Jungwon;Yoo, Jung Min;Amara, Heithem Ben;Lee, Yong-Moo;Lim, Young-Jun;Kim, Haeyoung;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose: This study evaluated differences in bone healing and remodeling among 3 implants with different surfaces: sandblasting and large-grit acid etching (SLA; IS-III $Active^{(R)}$), SLA with hydroxyapatite nanocoating (IS-III $Bioactive^{(R)}$), and SLA stored in sodium chloride solution ($SLActive^{(R)}$). Methods: The mandibular second, third, and fourth premolars of 9 dogs were extracted. After 4 weeks, 9 dogs with edentulous alveolar ridges underwent surgical placement of 3 implants bilaterally and were allowed to heal for 2, 4, or 12 weeks. Histologic and histomorphometric analyses were performed on 54 stained slides based on the following parameters: vertical marginal bone loss at the buccal and lingual aspects of the implant (b-MBL and l-MBL, respectively), mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupied (mBAFO), osteoid area fraction occupied (OAFO), and total bone area fraction occupied (tBAFO) in the threads of the region of interest. Two-way analysis of variance (3 types of implant $surface{\times}3$ healing time periods) and additional analyses for simple effects were performed. Results: Statistically significant differences were observed across the implant surfaces for OIC, mBIC, tBIC, OAFO, and tBAFO. Statistically significant differences were observed over time for l-MBL, mBIC, tBIC, mBAFO, and tBAFO. In addition, an interaction effect between the implant surface and the healing time period was observed for mBIC, tBIC, and mBAFO. Conclusions: Our results suggest that implant surface wettability facilitates bone healing dynamics, which could be attributed to the improvement of early osseointegration. In addition, osteoblasts might become more activated with the use of HA-coated surface implants than with hydrophobic surface implants in the remodeling phase.

THE LIMITATION OF ALVEOLAR BONE REMODELING DURING RETRACTION OF THE UPPER ANTERIOR TEETH (상악 전치부 견인 시 치아이동에 따른 전방 치조골개조량의 변화에 관한 연구)

  • Hwang, Chung-Ju;Moon, Jeong-Lyon
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.97-105
    • /
    • 2001
  • In many cases of orthodontic treatment the upper anterior teeth are retracted. Periodontal problems may arise during incisor retraction, if the amount of tooth movement and the amount of remodeling in the anterior cortical bone are not the same. Therefore in this study, to find out the relationship between the amount of tooth movement and the amount of bone remodeling during retraction of the upper anterior teeth, lateral cephalograms of 56 female patients over 18-year-old were taken before and after treatment. Among the 56 patients, two groups were divided according to the type of root movement during retraction. 26 patients mainly moved by tipping and 30 by bodily movement. The cephalograms taken before and after treatment were superimposed upon the true horizontal plane. In the Tip-Group, the horizontal bone remodeling/tooth movement ratio was 1:1.63, and in the Torque-Group it was 1:1.66. Because the amount of tooth movement and the amount of bone remodeling were not the same in both groups, in the Tip-Group the root apex moved away from the palatal cortical plate and closer to the labial cortical plate, whereas in the Torque-Group the root moved away from the labial cortical plate and closet to the palatal cortical plate. Therefore, there are limitations in the amount of incisor retraction in patients with a very thin anterior cortical plate in the maxilla, and in patients with severe skeletal discrepancies orthognathic surgery should be considered and when orthodontic camouflage treatment is the only possible method, the orthodontist must be aware of the limitations of treatment.

  • PDF

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

Histological analysis on tissues around orthodontically intruded maxillary molars using temporary anchorage devices: A case report

  • Hui-Chen Tsai;Julia Yu-Fong Chang;Chia-Chun Tu;Chung-Chen Jane Yao
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.125-136
    • /
    • 2023
  • Before progress was recently made in the application of temporary anchorage devices (TADs) in bio-mechanical design, orthodontists were rarely able to intrude molars to reduce upper posterior dental height (UPDH). However, TADs are now widely used to intrude molars to flatten the occlusal plane or induce counterclockwise rotation of the mandible. Previous studies involving clinical or animal histological evaluation on changes in periodontal conditions after molar intrusion have been reported, however, studies involving human histology are scarce. This case was a Class I malocclusion with a high mandibular plane angle. Upper molar intrusion with TADs was performed to reduce UPDH, which led to counterclockwise rotation of the mandible. After 5 months of upper molar intrusion, shortened clinical crowns were noticed, which caused difficulties in oral hygiene and hindered orthodontic tooth movement. The mid-treatment cone-beam computed tomography revealed redundant bone physically interfering with buccal attachment and osseous resective surgeries were followed. During the surgeries, bilateral mini screws were removed and bulging alveolar bone and gingiva were harvested for biopsy. Histological examination revealed bacterial colonies at the bottom of the sulcus. Infiltration of chronic inflammatory cells underneath the non-keratinized sulcular epithelium was noted, with abundant capillaries being filled with red blood cells. Proximal alveolar bone facing the bottom of the gingival sulcus exhibited active bone remodeling and woven bone formation with plump osteocytes in the lacunae. On the other hand, buccal alveolar bone exhibited lamination, indicating slow bone turnover in the lateral region.