• Title/Summary/Keyword: Aluminum plate

Search Result 535, Processing Time 0.028 seconds

The Study on Coatings to Improve the Radiative Heat Dissipation of Aluminum Alloy (알루미늄 합금의 복사방열향상을 위한 코팅연구)

  • Seo, Mihui;Kim, Donghyun;Lee, Junghoon;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.208-215
    • /
    • 2013
  • The aim of the present study was to improve the radiative heat dissipation of aluminum alloy, Al 1050. Resin/CuO coating and Cu/CuO composite plating were applied on aluminum alloy to improve the radiative heat dissipation. Resin/CuO coating was made using thermosetting silicon resin and Cu/CuO composite plating was made in pyrophosphate copper plating bath. Radiant heat flux($W/m^2$) was measured by self-produced radiant heat measurement device to compare each specimen. The cross section of specimen and chemical bonding of surface were analyzed by FE-SEM, XPS and FT-IR. As a result, radiant heat of Resin/CuO coating was higher than Cu/CuO composite plating due to the adhesion with aluminum plate and the difference in chemical bonding. But, Both of them were higher than aluminum alloy. In order to confirm the result of experiment, aluminum plate, Resin/CuO coating and Cu/CuO composite plating sample were applied LED and measured the LED temperature. As a result, LED temperature of samples were matched previous results and confirmed coated samples were lower about 10 degrees than the aluminum alloy.

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran (카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석)

  • Kim, Sung-Jun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.542-550
    • /
    • 2020
  • The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

Preparation of Electrode Coated with Activated Carbon for Dust Removal (분진제거를 위한 활성탄 전극판의 제조)

  • Kim, Kwang Soo;Park, Jung O;Jun, Tae Hwan;Kim, Ilho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.815-820
    • /
    • 2013
  • The purpose of this research is to prepare the aluminum electrode coated with activated carbon for removing air pollution dust. The experiments were studied on the selection of optimal polymer for binding aluminum plate with powdered activated carbon, preventing the pore blocking of activated carbon from polymer binder, and the dust treatability for the prepared activated carbon electrode. The optimal adhesive for coating activated carbon on an electric aluminum plate was polyvinyl acetate (PVA) with vinyl functional group. For the opening of the blocked pore with polymer, it was very effective to embed polymer solvent in pore of activated catbon firstly before mixing activated carbon with PVA, and then to devolatilize the embedded solvent of carbon pore at high temperature. The mass of trapped dust on aluminum electrode coated with activated carbon was about double of the trapped one on just aluminum electrode.

Analysis of the Drying Characteristics of Lycii Fructus with Drying Plates (구기자 건조판에 따른 특성 분석)

  • Lee, Seung-Kee;Park, Won-Jong;Kim, Wong;Kang, Myung-Hwa;Jeon, Myung-Jin;Paik, Seung-Woo;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.250-256
    • /
    • 2010
  • This study is conducted to analyze the drying characteristics of domestically produced Lycii Fructus for improving drying conditions which was dependant on the shape and materials of drying plate. The materials of the drying plates were steel, aluminum and ABS resin, and each plate was shaped semicircle, quadrangular pyramid, and triangle pyramid. Also, mesh plate, the most general type was included. In other words, 10 kinds of plates were made and tested. The test was conducted at $45^{\circ}C$, for 24 hours and moisture content was measured every 4 hours. The quality of tested Lycii Fructus was measured by colorimeter after drying. The experimental results show that regardless of species of Lycii Fructus, the drying rate of the aluminium plate shaped quadrangular pyramid was fastest, 3.11%w.b./h. Except the mesh plate, the drying rate of most plates was about over 2.52%w.b./h. The quality of Lycii Fructus dried on the aluminium plate shaped quadrangular pyramid was the highest, and it was easiest to separate the dried Lycii Fructus from the aluminum plate shaped quadrangular pyramid.

Fabrication Process of Aluminum Bipolar Plate for Fuel Cell using Vacuum Die Casting (진공 다이캐스팅 공법을 이용한 연료전지용 알루미늄 분리판의 제조 공정)

  • Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • This study aims to investigate the formability of bipolar plates for fuel cell fabricated by vacuum die casting of ALDC 6. Cavity shape of mold is thin walled plate (size: $200mm{\times}200mm{\times}0.8mm$) with a serpentine channel (active area: $50mm{\times}50mm$). Before bipolar plate was made by HPDC, computational filling behavior and solidification was performed by MAGMA soft. The final mold design for location and direction of channel was determined by computational simulation. Also, according to injection speed conditions, simulation result was compared to actual die casting experimental result. When vacuum pressure, injection speed of low and high region is 350 mbar, 0.3 m/s and 2.5 m/s respectively, products had few casting defects. On the other hand, at the same as injection speed, without vacuum pressure, products had many casting defects between end of the channel and overflow.

Effect of Welding Condition on Tensile Properties of Friction Stir Welded Joints of Al-7075-T651 Plate (용접 조건이 Al-7075-T651의 마찰교반용접부의 인장 특성에 미치는 영향)

  • Kim, C.O.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • This paper investigates the tensile properties of the friction stir welded joints of Al 7075-T651 aluminum plate according to the welding conditions. A 7075-T651 aluminum alloy plate with a thickness of 6.0 mm was used in this investigation. For the friction stir welding (FSW) process, a tool with shoulder diameter of 20 mm and probe diameter of 9 mm was used. The rotation speed and traverse speed conditions were changed in this study, the other welding conditions are constant. The welding direction was aligned with the material rolling direction, and dimension of the FSW plate were $250{\times}100{\times}6\;mm$. As far as this work is concerned, the optimal FSW conditions are determined as the rotation speed, 600 rpm and traverse speed 0.8 mm/sec or the rotation speed, 800 rpm and traverse speed 0.5 mm/sec.

Forming Analysis of A5083 Thick Plate for Moss Spherical LNG Tank and Prediction of Springback (알루미늄 후판을 이용한 Moss Spherical 타입의 LNG탱크 곡면 성형해석 및 스프링백 예측)

  • Yoon, J.H.;Jeon, H.W.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.305-311
    • /
    • 2012
  • One of the main methods of building LNG tankers uses the Moss spherical tank design since it can be precisely analyzed with respect to reliability and safety of construction by stress analysis. Aluminum alloy 5083 is generally used in the Moss spherical tank design for the wall in constructing the LNG tanker. This aluminum alloy does not have low temperature brittleness, but has good corrosion resistance, good weldability, and excellent material properties for the application. The Moss spherical tank is constructed with several sections of A5083 thick plate with curved surfaces, which are welded together. It is essential to predict the amount of springback for the deformed thick plates in design to insure a reliable construction because the structure needs to be assembled into a perfect sphere. Unless the initial construction meets the design, there are additional processing costs for reworking to meet the specifications as well as a cost penalty paid to a consumer. In this paper, FE analyses were conducted to predict the amount of springback for various forming conditions and forming processes. The various forming processes were evaluated with respect to reducing springback and compared with the conventional forming process used for curved surfaces of thick Al plate.