• Title/Summary/Keyword: Aluminum particles

Search Result 382, Processing Time 0.026 seconds

The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites (SiC 입자 보강 Al 복합재료의 피로균열 진전거동)

  • 권재도;문윤배;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.

Preparation of dense $BaMgAl_{10}O_{17}:Eu^{2+}$ particles and their surface treatment

  • Lee, Dae-Won;Boo, Jin-Hyo;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1499-1502
    • /
    • 2005
  • Dense $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor particles with a spherical shape have been synthesized through spray pyrolysis method using basic aluminum nitrate precursor as a spray solution. This $BaMgAl_{10}O_{17}:Eu^{2+}$ particles prepared by the spray pyrolysis have shown the stronger emission intensity compared to the commercially-available $BaMgAl_{10}O_{17}:Eu^{2+}$. However, thermal stability of the BAM:Eu b lue phosphor is very poor due to changing from $Eu^{2+}$ to $Eu^{3+}$ at the thermal process, so brightness of the phosphor decreases. To improve the thermal stability of the dense BAM:Eu phosphor, the spherical BAM:Eu particles were coated with pure $BaMgAl_{10}O_{17}$ layer using the hydrolysis reaction in a solution system. The synthesized powders were characterized by XRD, SEM and PL. On the other hand, the emission properties of the BAM:Eu phosphors coated with $BaMgAl_{10}O_{17}$ layer before and after thermal treatment at $500^{\circ}C$ for 30 min were estimated under VUV excitation. The brightness of the coated phosphor was higher than that of the uncoated phosphor. Also, the coating thickness of BAM layer in the BAM:Eu particles was optimized.

  • PDF

The Preparation of Blue CoAl2O4 Powders by the Malonate Method: The Effect of the Amount of Malonic Acid Used, the Formation Pathway of CoAl2O4 Crystallites and the Characteristics of the Prepared Powders

  • Lee, Gong-Yeol;Ryu, Kwang-Hyun;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.373-377
    • /
    • 2009
  • A pathway for the formation of normal $CoAl_2O_4$ particles is suggested. The optimal amount of malonic acid was determined, and the characteristics of the obtained powders were investigated. Normal $CoAl_2O_4$ powders were prepared using solutions of malonic acid and metal nitrates. X-ray diffraction, Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM) measurements, as well as Fourier transform infrared (FTIR) and ultraviolet/visible (UV-Vis) spectroscopy were carried out. Normal $CoAl_2O_4$ crystallites were formed by a solid state reaction between $CoAl_2O_4$ and amorphous aluminum oxide. The optimal molar ratio of malonic acid to the nitrate anions present in the initial solution was found to be 0.30~0.35. The particles were composed of agglomerates of primary particles. The primary particles were 40 nm in size. This size was relatively constant regardless of the preparation temperature. However, the size of the agglomerated particles increased to 220 nm with increasing temperature.

Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy (나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성)

  • Hwang, Sung-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Heat Exchanger with Circulating Solid Particles

  • Ahn, Soo-Whan;Lee, Byung-Chang;Kim, Won-Cheol;Bae, Myung-Whan;Lee, Yoon-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1175-1182
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000.

Preparation of Energetic Metal Particles and Their Stabilization (에너제틱 금속입자 제조 및 안정화 기술)

  • Lee, Hye Moon;Kim, Kyung Tae;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.173-185
    • /
    • 2013
  • Oxidations of metal generate large quantity of thermal and light energies but no toxic pollutants, so that metals with high calorific values, such as beryllium, boron, aluminum, magnesium, and lithium, are possible to be used as clean fuels instead of fossil fuels. However, they are so explosive due to very high oxidation rates that they should be stabilized by their surface passivation with oxides, organics and inorganics. For reasonable use of energetic metal particles as solid fuel, therefore, some detail information, such as thermal properties, preparation and passivation methods, and application area, of the energetic metals is introduced in this manuscript.

Effects of Cr and Al Sputtered sheet for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 크롬 및 알루미늄 스퍼터링의 효과)

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, shielding effectiveness(SE) of the shielding material of electromagnetic(EM) waves was investigated with actual experiments. The materials used in this study were made up of sputtering, film and powder of conductive materials - Cr, Al, Ag and Cu etc. Also, the polyester film was used as a base material. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, aluminum and chromium were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied when the sputtering. The SE strongly depended on the electric resistance by density of sputtering and painting particles. SE increased as the density of particles was increasing.

  • PDF

Thermal Compatibility of High Density U-Mo Powder Fuels Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyun-Suk;Chang, Se-Jung;Ko, Young-Mo;Lee, Don-Bae;Kim, Chang-Kyu;Kuk, Il-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.165-170
    • /
    • 1997
  • Samples of extruded dispersions of 24 vol.% spherical U-2wt%Mo and U-10wt.%Mo powders in an aluminum matrix were annealed for over 2,000 hours at 40$0^{\circ}C$. No significant dimensional changes occurred in the U-1025.%Mo/aluminum dispersions. The U-2wt.%Mo/aluminum dispersion, however, increased in volume by 26% after 2,000 hours at 40$0^{\circ}C$. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of U-Mo and aluminum. Interdiffusion between U-10wt.%Mo and aluminum was found to be minimal. The different diffusion behavior is primarily due to the fact that U-2wt.%Mo decomposes from an as-atomized metastable r-phase(bcc) solid solution into the equilibrium r-U and U$_2$Mo two-phase structure during the experiment, whereas U-10wt.%Mo retains the metastable r-phase structure after the 2,000 hours anneal and thereby displays superior thermal compatibility with aluminum compared to U-2wt.%Mo. In addition, the molybdenium supersaturated in U-10wt.%Mo particles inhibits the diffusion of aluminum atoms along the grain boundary into the particle. Also, the dissolution of only a few Mo atoms in UAL$_3$ retards the formation of the intermediate phase, as Mo atoms need to migrate from new intermetallic compounds to unreacted islands.

  • PDF

Measurement of Pressure-coupled Combustion Instability Characteristics : Acoustic Attenuation by Particulate Matter(Al) and Combustion Response of Solid Propellant (고체로켓 연소관 내 압력섭동에 대한 입자상 물질에 의한 음향 감쇠 및 연소응답 특성 측정)

  • Lim, Jihwan;Lee, Sanghyup;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.16-26
    • /
    • 2014
  • T-Burner tests of an Al/HTPB propellant in conjunction with a Pulsed DB/AB Method were conducted to find an acoustic amplification factor. Aluminum-free and aluminum-heavy propellants were examined. Instant surface ignition was successfully made by the use of a supplementary propellant of fractionally higher reaction rate. With the presence of higher aluminum concentration in the propellants, the pressure perturbations were promptly damped down and the pressure fluctuations were no longer dispersive. Addition of aluminum particles into the propellant was advantageous for stabilizing pressure-coupled unstable waves.

Characteristics Evaluation of Light Brake disc and Linning for Railway Vehicle In Terms of Tribology (트라이볼로지 관점에서 철도차량의 경량 제동 디스크와 라이닝의 특성 평가)

  • Kim, Sung-Kwon;Lee, Hi-Sung;Kwon, Seok-Jin;Kwon, Sung-Tae
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • The brake disc materials for railway vehicle have been mainly used cast-iron. The brake disc and pad should be light, resist to a thermal crack and absorb enough friction energy. In order to satisfy this requirement, aluminum alloy brake disc for railway vehicle has been newly developed. The aluminum itself has not been considered the friction material for railway vehicle. However, in the case of aluminum composite with dispersed ceramic particles, friction characteristics, resistance to wear and heat are much improved. In the present study, aluminum composite brake disc of 20% ceramic particle and three kinds of organic pads have been tested in dynamometer. The results show that Al MMC brake disc and pad have good friction coefficient and wear rate, and thermal cracks in brake disc have not been initiated. Also, the Al MMC brake disc can be applied to railway vehicle of 150 km/h.