• 제목/요약/키워드: Aluminum heat exchanger

검색결과 66건 처리시간 0.035초

통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교 (Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet)

  • 김내현
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

통신 함체 냉각용 플라스틱 재질의 열교환 소자 (Heat Exchange Element Made of Plastic for Cooling of Telecommunication Cabinet)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.702-708
    • /
    • 2017
  • 함체 내의 발열은 이동통신기기의 회선 처리 능력이 증가함에 따라 계속 증가하고 있다. 이 열을 적절히 외부로 방출해 주지 않으면 중계기 내의 온도가 상승하여 전자장치 오작동의 원인이 된다. 본 연구에서는 통신 함체 냉각 모듈용 알루미늄 및 플라스틱 소자의 성능에 대해 실험을 수행하고 이론 해석 결과와도 비교하였다. 알루미늄 소자는 핏치 4.5 mm의 대향류 평행 채널로 구성되고 플라스틱 소자는 핏치 2.0 mm의 직교류 및 직교 대향류 삼각 채널로 구성되었다. 한편 직교류 소자의 크기는 알루미늄 소자와 동일하고 직교대향류 소자는 알루미늄 소자보다 33% 크다. 실험 결과 플라스틱 직교 대향류 소자의 전열량이 가장 크고 알루미늄 대향류 소자의 전열량이 가장 작게 나타났다. 또한 알루미늄 대향류 소자를 base 소자로 할 때 플라스틱 직교대향류 소자의 온도교환효율은 base 소자보다 평균 56% 크고 플라스틱 직교류 소자의 값보다는 평균 29% 크게 나타났다. 한편 플라스틱 직교대향류 소자와 base 소자의 압력손실은 유사하게 나타났다. 열교환 효율은 플라스틱 직교대향류 소자에서 가장 크고 플라스틱 직교류 소자에서 가장 작게 나타났다. 또한 이론 모델은 소자의 성능을 다소 과대 또는 과소 예측하였다.

플라스틱 판형 열교환기의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Plastic Plate Heat Exchanger)

  • 유성연;정민호;김기형;이제묘
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.

주방환기용 직교류 알루미늄 열교환기의 성능해석 및 시험 (Performance Analysis and Testing of a Cross-Flow Aluminum Heat Exchanger for Kitchen Ventilation)

  • 김내현;조진표;한성필;최준영
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.193-201
    • /
    • 2006
  • Thermal performance model was developed for a cross-flow aluminum heat exchanger with relatively short passage. Appropriate heat transfer coefficient and friction factor equations for laminar channel flow were obtained considering developing regions. The heat exchanger was analyzed using the unmixed cross-flow ${\epsilon}$-NTU relationship considering leak-age between streams. Thermal contact between corrugations and plates was also considered. Tests were separately conducted for two samples - one made of non-treated aluminum sheets, and the other made of varnish-treated ones. The samples were made by stacking corrugations and plates one after another. The model adequately predicted the thermal performance and pressure drop of the non-treated heat exchanger. The thermal performance of the varnish-treated one was $7{\sim}12%$ overpredicted, and the pressure drop of the varnished-treated heat exchanger was $5{\sim}15%$ underpredicted. The air leakage ratio of the non-treated heat exchanger was $23{\sim}26%$. The ratio decreased to less than $10%$ with the varnish treatment.

핀 튜브 열교환기와 알루미늄 열교환기의 성능 비교 (Performance Comparison of Fin-Tube Heat Exchanger and Aluminum Heat Exchanger)

  • 장근선;이현수;김재덕;홍석률
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.408-413
    • /
    • 2008
  • This study presents comparison of the air side heat transfer and friction characteristics in a heating condition between Louver fin-tube heat exchangers and aluminum heat exchangers. Experiments are performed for the Louver fin-tube heat exchangers and aluminum heat exchangers using a calorimeter, which is designed based on air-enthalpy method described in ASHRAE standards. The air velocities its are varied from 0.7 to 1.6 m/s with 0.3 m/s interval. A study result shows that the heat transfer performances of aluminum heat exchangers are $40{\sim}80%$ higher than those of Louver fin-tube heat exchangers per unit volume, mass and heat transfer area.

  • PDF

아연 코팅과 열처리에 따른 알루미늄 열교환기 소재의 부식 (Effects of Zn Coating and Heat Treatment on the Corrosion of Aluminum Heat Exchanger Tubes)

  • 조수연;김재중;장희진
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.24-32
    • /
    • 2019
  • The effects of zinc coating and heat treatment on the corrosion resistance of aluminum alloys including A1100 and the modified A3003, used as heat exchanger tube were investigated in this study. The grain size of the heat-treated specimen is larger than that of the specimen without heat treatment, but the grain size did not significantly affect the corrosion behavior. The concentration of zinc was noted at 11.3 ~ 31.4 at.% for the as-received Zn-coated samples and reduced to 1.2 ~ 2.4 at.% after the heat treatment, as measured by the scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) on the surface. The concentration of oxygen is 22 ~ 46 at.% for the zinc coated specimens while noted at 7.4 ~ 12.8 at.% for the specimens after the removal of the coating. The corrosion behavior depended largely on the concentrations of zinc, aluminum, and oxygen on the specimen surface, but not on the Mo content. The corrosion potential was high and the corrosion rate was low for a specimen with a low zinc content, a high aluminum content, and a high oxygen content.

인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구 (A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis)

  • 정선호;양종훈;김용배;이광진;김봉환;이종섭;배기현
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

열전도성 플라스틱을 이용한 김치냉장고용 열교환기에 관한 연구 (Research on the Heat Exchanger for Kimchi Refrigerator Using Thermal Conductive Plastic)

  • 강태호;백정용;권용하;김인관;김영수;신대식;박재홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.407-416
    • /
    • 2005
  • The kimchi refrigerator is the electric home appliance which is used for the maturing and preserving of the kimchi in domestic and foreign market. The kimchi refrigerator is composed in 3 main parts as insulation. kimchi container, machinery room. The heat exchanger of kimchi refrigerator is made of aluminum and the other parts are made of steel and polymer. Also, kimchi refrigerator is expensive and heavy as compared with same class of refrigerator until now. In the present study, the possibility to replace heat exchanger from aluminum to thermal conductive plastic was analyzed and experimented. The thermal conductive plastic has $10{\sim}100$ times heat conductivity than that of normal plastic. It is known that heat transfer process is dependent not only conduction but convection or radiation. Thermal conductivity of the applied material in this research is over than 2 W/mK, thermal conductivity doesn't play a vital role on heat transfer. In this study, temperature is the most important parameter on the kimchi refrigerator and the temperature of kimchi refrigerator's heat exchanger was measured and compared with the temperature calibrated by CFD analysis on the inside wall of the kimchi refrigerator. It is important to keep constantly the inside temperature of the Kimchi refrigerator. Besides numerical analyses for the new thermal conductive plastic for heat exchanger were executed with the various height of evaporation tube. A series of experiments were conducted to compare the performance of the two heat exchanger made of aluminum and thermal conductive plastic at the same condition and certified the possibility of the thermal conductive plastic. According to these results, it was confirmed that the conventional aluminium heat exchanger can be replaced by thermal conductive plastic successfully.

자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험 (Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe)

  • 이욱현;이종현;김종수
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

A Study on the Surface Roughness of Aluminum Alloy for Heat Exchanger Using Ball End Milling

  • Chung, Han-Shik;Lee, Eun-Ju;Jeong, Hyo-Min;Kim, Hwa-Jeong
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.64-69
    • /
    • 2015
  • Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball endmilling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball endmilling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.