• Title/Summary/Keyword: Aluminum foundry

Search Result 223, Processing Time 0.019 seconds

Microstructures and Mechanical Properties of SiCp/ Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion (Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / SiC 입자강화 복합재료의 조직 및 기계적 특성)

  • Lee, Hag-Ju;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.335-345
    • /
    • 1992
  • Aluminum alloy matrix composites reinforced with various amounts of SiC particles have been produced by rheo-compocasting followed by hot extrusion. A relatively uniform distribution of SiC particles in the composites was obtained. The amounts of pore and SiC particles cluster were relatively small in the composites. Particle free zones were observed in the hot extruded composites when the amount of SiC particles was less than 20 vol%. However, the width of particle free zone decreases with the increase of SiC particle content. Eutectic Si phase play an important role for improving bonding between SiC particle and matrix. Tensile and yield strength increased with the increase of SiC particle content. the strenthening effect of SiC particle addition was effective even at relatively high temperature of 573 K.

  • PDF

Development of High Quality Die Casting Technology with Function to Purify Molten Metal (용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발)

  • Hatano, Tomoyuki;Takagi, Hiromi;Inagaki, Mitsugi
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.

Solidification Phenomena of Al-4.5wt.% Cu Alloy under Moderate Pressures (고압하에서의 Al-4.5wt.%Cu합금의 응고현상)

  • Cho, In-Sung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Solidification of aluminum alloys under moderate pressures has been investigated. Interfacial heat transfer coefficient at the casting/mold interface varies with time after pouring the molten metal into the die cavity, and therefore plays an important role in determining solidification sequence. The heat transfer coefficients were evaluated by using an inverse problem method, based on the measured temperature distribution. The calculated heat transfer coefficients were used for solidification simulation in the squeeze casting process. The effects of applied pressure and positions of insulation in the mold have also been investigated on solidification microstructures and on the formation of macrosegregation of Al-4.5wt.%Cu alloys.

  • PDF

Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy (알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측)

  • Kim, Ki-Young;Yi, Min-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

A Study on the Temperature Distribution of Metal Casting Mould (주조금형(鑄造金型)의 온도분포(溫度分布)에 관한 연구(硏究))

  • Min, Soo-Hong;Kim, Ok-Sam;Koo, Bon-Kwan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.79-84
    • /
    • 1991
  • The process of solidification of metal is accompanied by liquid-solid change and known as Stefan's heat conduction problem on the moving boundary. In this study the temperature distribution in ingot and metallic mould during casting was analyzed by the two dimensional heat conduction theory. The transient temperature distribution was numerically calculated using a finite element method on the nodal point of mesh screen representing ingot and mould cross section. The theory was applied on the casting of aluminum(purity ; 99%) in flat ingot mould of GC25. The analysis will make it possible to calculate an optimum mould shape of which temperature gradient becomes minimum.

  • PDF

Algorithm Development for Infiltration Control in Component Fabrication Process of Metal Matrix Composites and Their Evaluation (금속기복합재료의 부품 제조공정에 관한 함침제어알고리즘 개발 및 평가)

  • Kang, Chung-Gil;Yun, Kung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.523-536
    • /
    • 1996
  • This paper relates to fabrication processing analysis of metal matrix composites by the injection of liquid metal into a fibrous preforms. One dimensional heat transfer analysis during squeeze infiltration process of aluminum base composites has been studied. An analysis method was investigated for the temperature distribution, infiltration velocity and melt infiltration characteristics with the commercial preform with short fiber array. When molten metal is infiltrated in a fibrous preform with random orientation, phase transformation will be occurred in a region such as molten metal, solidified region, preform region and infiltration composites region. a mathematical modelling for a solidification phenomena in fabrication process of metal matrix composites using a squeeze infiltration technique was investigated by the basic relations for liquid metal into a fibrous preform. The temperature distribution of theoretical results was compared with experimental data.

  • PDF

Effect of Cooling Rate on the Prediction of Mechanical Properties of Al Alloys (알루미늄 합금 주물의 냉각 속도에 따른 기계적 성질 예측)

  • Dong, Quan-Zhi;Cho, In-Sung;Hwang, Ho-Young
    • Journal of Korea Foundry Society
    • /
    • v.32 no.5
    • /
    • pp.225-230
    • /
    • 2012
  • In this study, a more practical and simulation approach which can predict the mechanical properties of aluminum alloys is proposed. First, cooling rate, micro-structure, and mechanical properties of casting product were measured through casting experiment. The relation between cooling rate and SDAS decrease exponentially and the linearly decreasing relation exist between SDAS and mechanical properties. Then, the cooling rate was calculated by casting process simulation and the mechanical properties were predicted by using the relations that were derived through experiment. Experimentally measured mechanical properties and predicted values by simulation were in the range of relatively small difference. The mechanical properties of various Al alloys are expected to be predicted by the casting process simulation before actual casting.

Microstructure and Mechanical Properties of $SiC_p/6061$ Al Composites Fabricated by Indirect Squeeze Casting (간접 용탕단조법에 의하여 제조한 $SiC_p/6061$ Al 복합재료의 조직과 기계적 성질)

  • Seo, Young-Ho;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.373-382
    • /
    • 1998
  • Particulate reinforced aluminum alloys produced by indirect squeeze casting are difficult to shape by cutting or milling. Therefore near net shape forming of complex shapes is of high economic and technical interest. The complex shape products of $SiC_p/6061$ Al composites are fabricated by the melt-stirring and indirect squeeze casting process. The mold temperatures are $200^{\circ}C$ and $300^{\circ}C$ and applied pressures are 70, 100, and 130 MPa. The volume fractions of the reinforcements are in the range of 5 vol% to 15 vol%. The reinforcement dispersion state are observed using on optical microscope. By employing observed results systematically a correlation is demonstrated among the microstructure, particles behavior, mechanical properties and processing parameters for an optimum melt-stirring(compocasting) and indirect squeeze casting process of MMCs. A procedure to establish the optimum squeeze casting of Al-MMCs is proposed.

  • PDF

Numerical Analysis of the Solidification of L-Shaped Pure Aluminum Castings in Cast Iron Molds with IAD Method (L형주철금형에 주입한 순수한 알미늄의 IAD법에 의한 응고해석)

  • Kim, Dong-Hwan;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.4 no.1
    • /
    • pp.21-31
    • /
    • 1984
  • IAD( Implicit Alternative Direction ) FDM을 사용하여 금형에서의 L형 순수알미늄 주물에 대하여 그 응고상황의 수치적 해석을 2차원적으로 시도하였다. 계산은 주형비 ( 주형의 부피/주물의 부피 )에 따라 금형 표면에서의 대류현상과 금형/주물계면에서의 Air-gap형성 현상을 고려에 넣은 경우와 그렇지 않은 경우로 나누어 각각 콤퓨터에 의해 계산하여 그 결과를 비교하였다. 또한 금형/주물 계면주위의 온도구배를 구함으로써 Air-gap이 열전달에 미치는 영향을 검토하였다. 이와같은 시도에 의하여 주물의 응고시간, 응고방향 Hot spot의 위치 등 주조에 있어서 매우 중요한 사항들을 알아내는데 Numerical Analysis 이 매우 유용한 방법임을, 특히 금형표면에서의 대류현상과 금형/주물 계면에서의 Air-gap형성현상을 고려에 넣은 경우에 더욱 정확한 결과를 기대할 수 있다는 것이 확인되었다.

  • PDF

Development of Rheology Forming Technology of Wear Resistance Al-Si Materials (I);Filling Behavior and Defect Evaluation (내마모계 Al-Si 재료의 레오로지 성형기술 개발 (I);충진거동 및 결함분석)

  • Jung, Hong-Kyu;Kang, Sung-Soo;Moon, Young-Hoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.368-376
    • /
    • 2000
  • Rheology forming technology has been accepted as a new method for fabricating near net shaped products with lightweight aluminum alloys. The rheology forming process consists of reheating process of billet, billet handling, filling into the die cavity and solidification of rheology formed part. The rheology forming experiments are performed with two different die temperatures ($T_d$ = $200^{\circ}C$, $300^{\circ}C$) and orifice gate type. The filling behavior and various defects of Al-Si materials with wear resistance (A357, A390 and ALTHIX 86S) fabricated in rheology forming process are evaluated in terms of alloying elements and surface non-uniformity. Finally, the methods to obtain the rheology formed products with high quality are described by solutions for avoiding the surface and internal defects.

  • PDF