• Title/Summary/Keyword: Aluminum electrolytic capacitor

Search Result 24, Processing Time 0.023 seconds

Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties (알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성)

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.259-265
    • /
    • 2014
  • $ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor (Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구)

  • Jin, Chang-Soo;Lee, Yong-Sung;Shin, Kyung-Hee;Kim, Jong-Huy;Yoon, Soon-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Capacitance of a hybrid capacitor that has characteristics of both electrolyte capacitor and supercapacitor is determined by anode surface covered with oxide layer. In this study, optimal condition processes for anode to fabricate a high voltage hybrid capacitor was investigated. We mixed aluminum powder having mean particle size of $40{\mu}m$ with NaCl powders at weight ratio of 4 : 1 and prepared a disk type electrode after annealing at various temperature. After dissolving NaCl in $50^{\circ}C$ distilled water, heat treatment, eletropolishing, chemical treatment, and the first and the second etching of Al disk were conducted. In each process, capacitances and resistances of the disk measured by ac-impedance analyzer were compared to find its optimum treatment condition. Also, the surface morphology of treated disks were observed and compared by SEM. After the second etching, the Al disk was anodized at 365V to make an anode of hybrid supercapacitor that can be operated at 300V, Capacitance and resistance of the anodized Al disk electrode was compared with those of commercialized conventional aluminum electrolytic capacitor at different frequencies.

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode (금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향)

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

Formation of Aluminum Etch Tunnel Pits with Uniform Distribution Using UV-curable Epoxy Mask (UV-감응형 에폭시 마스크를 사용한 균일한 분포의 터널형 알루미늄 에치 피트 형성 연구)

  • Park, Changhyun;Yoo, Hyeonseok;Lee, Junsu;Kim, Kyungmin;Kim, Youngmin;Choi, Jinsub;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.562-565
    • /
    • 2013
  • The high purity Al foil, which has an enlarged surface area by electrochemical etching process, has been used as an anode for an aluminum electrolytic capacitor. Etch pits are randomly distributed on the surface because of the existence of surface irregularities such as impurity and random nucleation of pits. Even though a large surface area was formed on the tunnel-etched Al, its applications to various fields were limited due to non-uniform tunnel morphologies. In this work, the selective electrochemical etching of aluminum was carried out by using a patterned mask fabricated by photolithographic method. The formation of etch pits with uniform distribution has been demonstrated by the optimization of experimental conditions such as current density and etching solution temperature.