• 제목/요약/키워드: Aluminum electrode

검색결과 234건 처리시간 0.021초

알루미늄의 펄스 전류 미그 용접 (Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

방전 플라스마에 의한 CFC-12($CCl_2F_2$)의 분해 (Decomposition of CFC-12($CCl_2F_2$) by Discharge Plasma)

  • 강현춘;우인성;황명환;안형환;이한섭;조정국;강안수
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.93-100
    • /
    • 1999
  • Decomposition efficiency, power consumption, and applied voltage of CFC(Chlorofluorocatbon) were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of CFC-12 with various electric frequencies(5~50kHz). flow rates (100~1,000mL/min), initial concentrations(100~1,000ppm), electrode materials(W, Cu, Al). electrode thickness(1, 2, 3mm) and reference gases($N_2$, $O_2$, air) were measured and the products were analyzed with FT-IR. Experimental results showed that at the frequency of 10kHz, the highest decomposition efficiency of 92.7% for CFC-12 were observed at the power consumptions of 29.6W. respectively, and that decomposition efficiency decreased with increasing frequency above 20kHz and decomposition efficiency per unit power were 3.13%/W for CFC-12. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3m. As the electrode material, decomposition efficiency was in order that tungsten(W), copper(Cu), aluminum (Al). Decomposition of CFC-12 in the reference gas of $N_2$ showed the highest efficiency among three reference gases, and then the effect of reference gas on the decomposition efficiency decreased in order of air and $O_2$. The optimum power for the maximum decomposition efficiency was 25.3W for CFC.

  • PDF

수계 내 조류 제거를 위한 전기응집 운전 특성 평가 (Evaluation of Operation Parameters for the Removal of Algae by Electro-Coagulation)

  • 정권;김도군;김석구;김원재;고석오
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.94-102
    • /
    • 2015
  • Electro-coagulation experiments were conducted with aluminum (Al) or iron (Fe) electrode in order to determine the optimal electrode material and operation conditions for algae removal. Al electrode showed higher removal rate of algae than Fe electrode because Al flocs have positive surface charges which electrostatically attract algae species having negative surface charges. Removal rate of algae and total phosphorous (T-P) was increased as current density and electrode area increases. It was also found that initial pH with neutral range was optimum for T-P removal by electro-coagulation. Bench-scale continuous flow experiments consisted of electro-coagulation reactor, agitation tank and settling tank were conducted. In electro-coagulation reactor, a large fraction of Al flocs were distributed to scum layer, due to the gas bubbles generated by electrolysis reaction. In agitation tank, most of Al flocs were settled and the optimal mixing intensity was found to be 50 rpm to achieve good settleability. The removal rate of algae was about 90-95%. Additionally, the removal rate of the T-P and COD was observed to be $73.8{\pm}8.0%$ and $75.0{\pm}3.8%$, respectively. Meanwhile, the removal rate of total nitrogen (T-N) was relatively low at only 24%.

산화처리 탄소의 전기화학적 거동 및 이를 이용한 EDLC 특성 (Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor)

  • 양선혜;김익준;전민제;문성인;김현수;안계혁;이윤표;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.481-481
    • /
    • 2007
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black: PTFE = 95-x : x : 5 wt.%. It was found that the best electric and mechanical properties were obtained in sheet electrode roll-pressed for about 15 times and in sheet electrode, in which composition is MSP 20 : carbon black: PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability in the current range of $0.5mA/cm^2$ $100mA/cm^2$ and the lowest equivalent series resistance.

  • PDF

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • 이승준;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향 (Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film)

  • 이승준;장석기;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

비정질 실리콘 박막 트랜지스터 소자 특성 향상을 위한 저 저항 금속 박막 전극의 형성 및 전기적 저항 특성 평가 (Metallizations and Electrical Characterizations of Low Resistivity Electrodes(Al, Ta, Cr) in the Amorphous Silicon Thin Film Transistor)

  • 김형택
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 춘계학술대회 논문집
    • /
    • pp.96-99
    • /
    • 1993
  • 대면적 액정 표시판 (Liquid Crystal Display:LCD) panel내(內)의 구동소자인 비정질 실리콘 (amorphous silicon) 박막 트랜지스터 (Thin Film Transistor:TFT)의 구동신호전달 소자특성 향상을 위한 본(本) 연구의 목적은 액정 panel TFT 제조공정 상(上)의 증착금속 전극박막들의 Test Elements Group(TEG) metal line pattern별(別) 전기적 저항특성 평가에 있다. 현(現) TFT 전극용(用)으로 개발이 진행 중(中)인 Aluminum(Al), Tantalum(Ta) 및 Chromium(Cr) 이 특성평가 대상 금속 박막으로 선정 되었으며, 이들 금속막의 증착 thickness 와 TEG metal line width가 저항특성 변수로 성립 되었다. 본(本) 실험을 통해 금속 박막의 TEG line width별(別) 체적(體積)저항 (bulk resistance), 면(面)저항(sheet resistance), 비(比)저항 (resistivity) 및 기판 상(上)의 metal pattern 위치 변화에 따른 전기적 저항 uniformity 특성변화 평가가 있었다. TEG metal line 측정 변위에 따른 저항율의 선형변화 특성도 연구 되었으며, metal line별(別) 전기적 연속, 불연속 배선 단락 특성(electrical continuity test) 관찰도 있었다.

  • PDF

Simultaneous Removal of Gas and Dust by Activated Carbon Coated Electrode

  • Kim, Kwang Soo;Park, Jung O;Lee, Ju Haeng;Jun, Tae Hwan;Kim, Ilho
    • Environmental Engineering Research
    • /
    • 제18권4호
    • /
    • pp.229-234
    • /
    • 2013
  • This study aimed to develop a new dust collecting system equipped with an activated carbon (A.C.) coated electrode. Before fabrication, pre-treatment of A.C. was performed to remove metal ions within the A.C. to enlarge its specific surface area. Then, pre-treated A.C., black carbon, polyvinyl acetate (PVAc), and methanol were mixed to make a gel compound, which was coated onto aluminum plates to fabricate electrodes. The optimal mixing ratio of A.C., black carbon, PVAc, and methanol was found to be 10 g: 2 g: 3 g: 20 mL. After fabrication, the electrodes were used in the batch-type experiment for $NH_3$ and $H_2S$ removal. The reduction rates of the gases were high at the beginning and slowly reduced with time. Dust collection experiments were conducted in continuous flow, with various voltages applied. Compared to 5 kV, dust removal efficiency was 1.5 times higher when 10 kV was applied. Increasing the number of electrodes applied also increased the collecting efficiency. The correlation coefficient between actual collecting efficiency and trend line was higher than 99%. Consequently, the novel dust collection system equipped with A.C. coated electrode appears to be a promising substitute for existing dust-control devices.

금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향 (Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode)

  • 정명선;주병권;오영제;이전국
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향 (Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP)

  • 안형환;강현춘
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.543-563
    • /
    • 1999
  • 본 연구에서는 특수 설계된 연면방전(Surface discharge induced Plasma Chemical Process, SPCP) 반응기로부터 발생하는 플라스마에 의하여 일산화질소(NO)와 이산화질소($NO_2$)등 유해 환경오염 가스를 주파수, 유량, 농도, 전극재질 및 감은 횟수 등의 공정변수 변화에 따른 분해율, 소비전력 및 소비전압 등을 측정하여 최적의 공정조건과 최대의 분해효율을 얻고자 하였다. 표준시료로서 일산화질소와 이산화질소를 고전압발생기의 주파수(5~50kHz), 유해가스의 체류시간(1~10.5 초)과 초기농도(100~1000 ppm), 전극의 재질(W, Cu, Al), 전극의 굵기(1, 2, 3 mm)및 감은횟수(7회, 9회, 11회)에 대하여 플라스마 연면방전 반응기를 이용하여 분해효율을 구하였다. 유해가스(NO, $NO_2$)의 분해제거 실험결과, 10 kHz의 주파수와 각각 19.8와 20 W의 소비전력에서 각각 94.3, 84.7 %로 가장 높은 분해제거율을 나타내었고, 20 kHz이상에서는 주파수가 커질수록 분해율이 감소하였다. 또한 연면방전 반응기에서 유해가스의 체류시간이 길수록, 그리고 초기농도가 작을수록 분해율은 증가하였다. 방전전극에 대한 영향은 전극의 굵기가 굵을수록 분해율이 증가하여 본 실험의 경우 3 mm의 전극을 사용하였을 때 가장 높은 분해율을 나타내었고, 전극의 재질은 텅스텐을 사용하여 방전한 경우에 가장 높은 분해율을 보였으며 구리, 알루미늄의 순으로 낮아졌다. 방전전극의 감은 횟수에 대한 영향은 7회, 9회, 11회의 순으로 감은 횟수가 많을수록 분해율이 높아짐을 알 수 있었다.

  • PDF