• 제목/요약/키워드: Aluminum die casting process

검색결과 57건 처리시간 0.023초

반용융 성형공정의 응용 및 문제점 (Applications of Semi-Solid Forming and its Problems)

  • 강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.135-147
    • /
    • 1997
  • The production of light metal parts using aluminum is mainly performed by die casting and squeeze casting, which directly fabricate the required shape from the liquid state. However, die casting is subject to defects such as shrinkage porosity and air trapped when molten metal enters the cavity, whilst squeeze casting also has defects due to turbulent flow in the die cavity. Both diecasting and sqeeze casting have inhomogeneous mechanical property in terms of dendritic structure during solidification. Active research has been carried out on semi-solid processing, rather than on conventional process methods such as die casting, which involve various problems. Therefore in this paper, to introduce the fundamental technology for d e design, in die casting and forging process with semi-solid materials, relationship between stress and strain of semi-solid materials, and for producing parts die design has been proposed as parameters of globulization of the microstructure and gate shape. The prevention of various defects to produce sound parts are also introduced.

  • PDF

자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석 (Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars)

  • 조승현;장준영
    • 한국생산제조학회지
    • /
    • 제25권2호
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

CAE을 이용한 주조방안설계 : 자동차용 부품(오일팬_BR2E) (Casting Layout Design Using CAE Simulation : Automotive Part(Oil Pan_BR2E))

  • 권홍규
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.35-40
    • /
    • 2017
  • A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.

레오로지 박판의 전자교반을 응용한 진공 저압주조 제조공정 (Fabrication Process of Rheology Material Thin Plate Using Vacuum Low Pressure Die-casting Process with Electromagnetic Stirring)

  • 장신규;배정운;진철규;강충길
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.16-23
    • /
    • 2012
  • In this study, we develop the lower pressure die casting with rheo-forming process of A356 aluminum alloy and vacuum system which can control the crystal size and obtain the high strengthened-light material. Using this process, we fabricate the thin plate for bipolar plate through the low pressure die casting with electromagnetic stirring and vacuum-evacuation which can control the crystal grain by electromagnetic stirring. Thin plate ($110mm{\times}130mm{\times}1mm$) is fabricated by this process. The average Vickers hardness of thin plate is about 77 HV.

유동 및 응고해석을 이용한 주조방안설계-자동차용 부품(오일팬_BJ3E) (Casting Layout Design Using Flow & Solidification Analysis-Automotive Part(Oil Pan_BJ3E))

  • 권홍규
    • 산업경영시스템학회지
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE). Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.

레오다이캐스팅에 의한 알루미늄 부품의 평가 (Evaluation of Aluminum Part by Rheo Die Casting)

  • 서판기;정용식;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.99-102
    • /
    • 2004
  • In rheo forming process, slurry making is very important factor because the microstructure of slurry affects the quality of final products. To control the microstructure of slurry, slurry making by new rheo die casting was studied. In new rheocasting method, processes parameters are degree of overheat in molten metal, cooling condition, high frequency induction heating condition and cup temperature. Microstructures according to these parameters were observed. By image analysis, equivalent diameter and roundness of grain were investigated and discussed. To find out mechanical properties of grain controlled aluminum part by rheo die casting, tensile tests were carried out to the T6 heat treatment.

  • PDF

고진공 다이캐스팅 공법 적용한 알루미늄 서브프레임 개발 (Front Aluminum Subframe of High Level Vacuum Die-casting)

  • 조영건;임태성;장상길;조철한
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.52-59
    • /
    • 2012
  • The subframe has been generally manufactured by using stamped steel material. Recently, automotive designers are considering aluminum as lightweight material. This paper describes the development process of an aluminum subframe which is made by high level vacuum die casting process, which is beneficial for minimizing gas contents and material properties. The weight of manufactured subframe is reduced by 4kg with the comparison of steel subframe. The aluminum subframe is packaged for the current vehicle layout and the imposed requirement is to attain a better structural performance that is evaluated in terms of mounting stiffness, noise and vibration, and endurance performance. The NVH evaluation results show that sound level is decreased by 8dB with the help of high roll-rod mounting stiffness as well as high structural modes.

진공 다이캐스팅 공법을 이용한 연료전지용 알루미늄 분리판의 제조 공정 (Fabrication Process of Aluminum Bipolar Plate for Fuel Cell using Vacuum Die Casting)

  • 진철규;강충길
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.71-78
    • /
    • 2011
  • This study aims to investigate the formability of bipolar plates for fuel cell fabricated by vacuum die casting of ALDC 6. Cavity shape of mold is thin walled plate (size: $200mm{\times}200mm{\times}0.8mm$) with a serpentine channel (active area: $50mm{\times}50mm$). Before bipolar plate was made by HPDC, computational filling behavior and solidification was performed by MAGMA soft. The final mold design for location and direction of channel was determined by computational simulation. Also, according to injection speed conditions, simulation result was compared to actual die casting experimental result. When vacuum pressure, injection speed of low and high region is 350 mbar, 0.3 m/s and 2.5 m/s respectively, products had few casting defects. On the other hand, at the same as injection speed, without vacuum pressure, products had many casting defects between end of the channel and overflow.

응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석 (A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena)

  • 강충길;최진석;강동우
    • 소성∙가공
    • /
    • 제5권3호
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

PECVD에 의해 생성된 TIBN 박막의 특성 (Properties of TiBN Films produced by PECVD)

  • 허정;유용주
    • 열처리공학회지
    • /
    • 제15권3호
    • /
    • pp.136-141
    • /
    • 2002
  • During warm and hot forging process of steels or aluminum alloys, dies are subject to early fracture, severe wear by thermo-mechanical stress. Especially, during the die-casting of aluminum alloys, the service life of dies is incredibly lowered. In this study we investigated the characteristics of TiBN films produced by PECVD. TiBN films showed very high hardness, excellent wear resistance, which could enhance the service life of die parts such as forging punch, die casting core pin successfully.