• Title/Summary/Keyword: Aluminum Thin Film

Search Result 304, Processing Time 0.019 seconds

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Characteristics of Electomigration & Surface Hardness about Tungsten-Carbon-Nitrogen(W-C-N) Related Diffusion Barrier (W-C-N 확산방지막의 전자거동(ElectroMigration) 특성과 표면 강도(Surface Hardness) 특성 연구)

  • Kim, Soo-In;Hwang, Young-Joo;Ham, Dong-Shik;Nho, Jae-Kue;Lee, Jae-Yun;Park, Jun;Ahn, Chan-Goen;Kim, Chang-Seong;Oh, Chan-Woo;Yoo, Kyeng-Hwan;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • Copper is known as a replacement for aluminum wire which is used for semiconductor. Because specific resistance of Cu ($1.67{\mu}{\Omega}$-cm) is lower than that of Al ($2.66{\mu}{\Omega}$-cm), Cu reduce RC delay time. Although melting point of Cu($1085^{\circ}C$) is higher than melting point of Al, Cu have characteristic to easily react with Silicon(Si) in low temperature, and it isn't good at adhesive strength with Si. For above these reason, research of diffusion barrier to prevent reaction between Cu and Si and to raise adhesive strength is steadily advanced. Our study group have researched on W-C-N (tungsten-carbon-nitrogen) Diffusion barrier for preventing diffusion of Cu through semiconductor. By recent studies, It's reported that W-C-N diffusion barrier can even precent Cu and Si diffusing effectively at high temperature. In this treatise, we vaporized different proportion of N into diffusion barrier to research Cu's Electromigration based on the results and studied surface hardness in the heat process using nano scale indentation system. We gain that diffusion barrier containing nitrogen is more stable for Cu's electromigration and has stronger surface hardness in heat treatment process.

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME (수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구)

  • Kim, Kyung-Hyun;Kwon, Oh-Sung;Kim, Hyun-Gee;Baek, Kyu-Chul;Um, Chung-Moon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF