• 제목/요약/키워드: Aluminum Sheet

검색결과 384건 처리시간 0.026초

Finite element computer simulation of twinning caused by plastic deformation of sheet metal

  • Fuyuan Dong;Wang Xu;Zhengnan Wu;Junfeng Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.601-613
    • /
    • 2023
  • Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.

자동차용 알루미늄 5185-폴리프로필렌 샌드위치 판재의 성형성 (Formability of Aluminum 5182-Polypropylene Sandwich Panel for Automotive Application)

  • 김기주;정효태;손일선;김철웅;김중배
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.175-181
    • /
    • 2007
  • The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, newly adopting formability evaluation (using limit dome height and plane strain test) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. The results showed that there were good agreements between the old formability evaluation method and the new method which was more simplified than that of old one. From the results of these formability evaluation, the formability of sandwich panel was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich panel. Also, it was found that sandwich panel could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

Al 박막의 underlayer로서의 Ionized Physical Vapor Deposition (I-PVD) Ti 또는 I-PVD Ti/Metal-Organic Chemical Vapor Deposition TiN (Ti Prepared by ionized physical vapor deposition (I-PVD) and TiN prepared by metal-organic chemical vapor deposition(MOCVD) as underlayers of aluminum TiN)

  • 이원준;나사균
    • 한국진공학회지
    • /
    • 제9권4호
    • /
    • pp.394-399
    • /
    • 2000
  • Underlayer의 종류 및 두께가 Al 박막의 texture 및 면저항 변화에 미치는 영향을 연구하였다. Al의 underlayer로는 ionized physical vapor deposition(I-PVD)에 의해 제조된 Ti와 I-PVD Ti 위에 metalorganic chemical vapor deposition(MOCVD)에 의해 제조된 TiN을 적층한 구조가 사용되었으며, 각각에 대해 두께를 변화시키면서 Al 박막의 배향성, 면저항을 조사하고, $400^{\circ}C$, $N_2$분리기에서 열처리하면서 면저항의 변화를 조사하였다. I-PVD Ti만을 Al의 underlayer로 사용한 경우, Ti두께가 5 nm이어도 Al 박막이 우수한 <111> 배향성을 나타내었으나, Al-Ti반응 때문에 열처리 후 Al 배선의 면저항이 크게 상승하였다. I-PVD 와 Al 사이에 MOCVD TiN을 적용함에 의해 Al <111> 배향성의 큰 저하없이 Al-Ti 반응에 의한 면저항의 증가를 억제할 수 있었으며, MOCVD TiN의 두께가 4 nm 이하일 때 특히 우수한 Al <111> 배향성을 나타내었다.

  • PDF

저탄소강의 알루미늄 도금조건에 따른 Nd:YAG 레이저 용접성 (Weldability of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser)

  • 김종도;이정한;김숙환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.736-743
    • /
    • 2007
  • Laser welding has the advantage of high welding speed and Provides low heat distortion Thus laser welding is a very attractive process for joining thin steel sheet and surface treated steel sheet. And the major item in market for surface treated steel sheet is zinc coated steel. However. the laser welding of zinc coated steel is very difficult because of its low boiling point. Compared with zinc, on the other hand, aluminum has a high boiling point. Thus, laser weldability of aluminized steel is better than that of zinc coated steel. Moreover aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. The results of laser weldability of the aluminized steel for the full penetration welding will be described in this paper We focused on the investigation of the phenomenons caused by coating condition and behavior of aluminum in weld.

유한요소해석 연계 알루미늄 다층판재의 기계적 거동 예측 (Predicting Mechanical Response of Multilayered Aluminum Sheet Using Finite Element Analysis)

  • 성진영;김민호;봉혁종;이광석;김민중;김지훈
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.347-355
    • /
    • 2020
  • The mechanical responses of multilayered aluminum sheet fabricated by roll bonding, i.e., A1050/A3004 (65% A1050, 35% A3004 by thickness), were investigated via combined experiment and finite element (FE) analysis. The mechanical properties were measured using uniaxial tensile tests in various loading directions for the multilayered sheet. The corresponding tests for individual layers were also conducted. The testing samples were prepared by wire electro discharge machining (EDM). Stress-strain curves and Lankford coefficients of the multilayered sheet were then predicted by FE simulations. The measured mechanical properties of the individual layers were utilized as inputs for the simulation. Two yield functions, i.e., isotropic von-Mises and anisotropic non-quadratic Hill1948, were employed. Predicted results were compared with the experimental data and further discussed.

V-벤딩 금형에서 박판 소재의 실험과 해석을 통한 스프링 백 비교 고찰 (A comparative study of experiment and analysis of sheet matal in V-bending)

  • 정균민;최계광
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.21-25
    • /
    • 2021
  • When the product is removed from the mold after molding during the sheet metal molding process, elastic recovery causes a springback phenomenon. Much research has been done to minimize this phenomenon. In this study, V-bending experiments were conducted using galvanized steel sheets, stainless steel, and aluminum sheet materials, using a total of nine types of thin sheet materials of 1.0t, 1.5t, and 2.0t, respectively. Molding analysis and experimental data were compared and analyzed. In the case of galvanized steel sheets, it was considered that the springback phenomenon occurs more frequently in molding analysis than in experiments. It was considered that the springback phenomenon occurs greatly in the experiment, not the interpretation of the molding of the stainless steel plate and the aluminum plate. It was considered that the springback occurrence tendency of the molding analysis and the experiment was the same, and the springback occurrence error rate of the molding analysis and the experimental result was about 4.0%.

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향 (Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys)

  • 윤정환;;정관수;양동열;장성기
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

알루미늄 5000계 판재에서 두께 층에 따른 집합조직 형성에 미치는 압연 패스당 변형률의 영향에 관한 연구 (Effect of Rolling Draughts on the Evolution of Through-Thickness Textures in Aluminum 5000X Sheet)

  • 김현철;김용희;허무영
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.193-202
    • /
    • 2000
  • The influence of rolling draughts on the formation of through-thickness textures in aluminum 5000X sheet was investigated by X-ray texture measurements and microstructure observations. In order to intensify the deformation inhomogeneities, cold rolling was performed without lubrication. Applying a large draught gave rise to the formation of the shear texture at the surface, whereas a normal plane strain testure formed at the surface after deformation with a small draught. The orientation density along the $\beta$-fiber orientations which developed in the center layer of the rolled specimen was also dependent on the strain gradients in a roll gap. Upon annealing, the deformed substructure of sample surfaces was transformed into a fine grained recrystallized microsturcture through extended recovery reaction. However, coarse grains developed after the discontinuous recrystallization which gave rise to the development of the Cube-texture.

  • PDF

샌드위치 판재의 차량적용 기술개발 (Development of Application Technique for a Car Body with Aluminium Sandwich Panels)

  • 이명호;;이경남;김종하;이중윤;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.131-139
    • /
    • 1998
  • An aluminium sandwich sheet is the material fabricated by adhering two aluminum panels to one plastic core. If it has the same bending stiffness as an steel panel, it is 65% lighter than steel panel and 30% lighter than aluminum panel. Therefore it is marked exclusively as god substitutive materials of steel body for improving fuel efficiency. But an aluminium sandwich sheet has problem of the lower formability than steel for automotive application. In this paper we intend to develop application technologies of an aluminum sandwich sheet for auto body panels from the selecting composed materials of aluminium sandwich sheets to fabricating prototype. We selected aluminium sandwich panels fabricated by Hoogovens company. Through formability tests we have finished the design and fabricated a mould and a prototype.