• Title/Summary/Keyword: Aluminum Particle Combustion

Search Result 25, Processing Time 0.017 seconds

Numerical Analysis for Slag Deposition in the Kick Motor (킥모터 슬래그 적층에 대한 수치해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-143
    • /
    • 2008
  • Slag mass deposition was required to predict performance accurately of KSLV-I kick motor(KM) system. The validation of the numerical analysis was performed with mass flow rate measured at 4th ground test of the KM. The study described here included internal flow field of KM at various time steps during burning. Slag mass accumulation was computed through the aluminum oxide particle paths to deviate from the gas flow streamlines in flight. These numerical analysis was performed with Fluent 6.3 program The effects for the acceleration, origins and diameters of the aluminum oxide particles was analyzed, finally the total slag mass accumulation was acquired. We confirmed that the slag mass deposition was agreement well with predicted slag mass based on kick motor the grounded test.

  • PDF

Prediction for Slag Mass Accumulation in the Kick Motor (킥모터 슬래그 적층량 예측)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Accumulated slag mass was predicted to estimate accurate performance of kick motor (KM) system. The validation of numerical analysis was performed with mass flow rate measured at the 4th ground test of the KM. The study described here includes the internal flow field of KM at various time steps during burning. Slag mass accumulation was analyzed through the aluminum oxide particle paths to predict slag mass deposition. Numerical analysis to solve both flow field and droplet accumulation was performed with Fluent 6.3 program. Analysing the effects of the acceleration, starting position and diameters of the aluminum oxide particles, total slag mass accumulation was obtained.

A Study about The Effect of Radiation on Particle-Seeding Hydrogen Flame (고체입자의 수소화염에 있어서의 열복사에 관한 연구)

  • Choi, Joon-Won;Baek, Seung-Wook;Kim, Jung-Ju;Kim, Han-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.129-139
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative. However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition, the effects of addition of reacting as well as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75% was occupied by radiation while 25 % by convection. When the aluminum oxide ($Al_2O_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.

  • PDF

Effects of Solid Propellant Cases on the Thermal Response of Nozzle Liner (노즐 내열재 열반응에 미치는 고체 추진제 연소가스의 영향)

  • Hwang, Ki-Young;Yim, Yoo-Jin;Ham, Hee-Cheol;Kang, Yoon-Goo;Bae, Joo-Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.26-36
    • /
    • 2007
  • The thermal response characteristics of nozzle liner for a solid rocket motor applying highly aluminized PCP or HTPB propellant with slotted tube grain have been investigated. The SEM photographs of aluminum oxide particles taken from nozzle liner show that the PCP propellant with the finer and less contents of oxidizer can offer greater possibility for increasing aluminum agglomeration than the HTPB propellant. The PCP propellant shows locally greater mechanical erosion at 4 circumferential areas of the nozzle entrance in line with grain slot due to the impingement of large particles, but the HTPB propellant shows greater thermochemical ablation at the nozzle blast tube, the throat insert and the exit cone because of relatively much more mole fraction of $H_2O\;and\;CO_2$ in combustion gases.

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF