• 제목/요약/키워드: Aluminum Forging

검색결과 122건 처리시간 0.023초

비선형 열전달 계수를 사용한 알루미늄 6082 빌렛의 열간 압축 공정 해석 (Analysis of Hot Compression Process of Aluminum 6082 Billet using Nonlinear Heat Transfer Coefficient)

  • 전효원;서창희;권태하;박춘달;전진호;최현열;강경필
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.5-14
    • /
    • 2019
  • In order to reduce the weight of automobile parts, automobile parts using aluminum alloy are being developed. Aluminum alloy for automobile parts is mainly made of Al6xxx (Al-Mg-Si) type alloy, which is excellent in hot forming property, and it can increase mechanical properties by the use of heat treatment. In this study, hot forming was performed using Al6082. Before the hot forming, the forming analysis was performed using the DEFORM-3D finite element analysis program in this case. For the forming analysis, the heat transfer coefficient was derived from the experiment, and the forming analysis was performed by applying it. At the forging analysis, the temperature of Al6082 material was set to 813K and that of the mold was set to room temperature. After the forging analysis, the experiment was performed, and the forging analysis and the experimental results were compared.

유한요소해석을 이용한 알루미늄분말단조 피스톤 성형해석에 관한 연구 (A Study of the FEM Forming Analysis of the Al Power Forging Piston)

  • 김호윤;박철우;김현일;박경서;김영호;조호성
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1543-1548
    • /
    • 2010
  • 분말단조 공정은 정형의 자동차부품을 제작하는데 널리 이용되고 있다. 분말야금이란 금속 원료 분말을 사용하여 원하는 제품의 형태로 성형을 한 다음 적정온도에서 소결하여 필요한 금속 제품을 제조하는 기술을 말한다. 본 연구에서는 자동차 엔진의 경량화를 위한 피스톤 제작에 관한 것이다. 분말단조로 제작 되어진 엔진 피스톤의 특성을 유한요소해석을 통해서 알아보겠다. 유한요소해석은 DEFORM/3D 를 이용해서 성형성을 평가하도록 하겠다. 성형온도, 구배각도, 마찰계수의 변화에 따른 피스톤의 성형성을 알아보겠다.

레오로지 단조를 위한 전자교반응용 알루미늄 합금의 결정립 제어 (Grain Control of Aluminum Alloys with Electromagnetic Stirring for Rheology Forging)

  • 오세웅;고재홍;김태원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.350-353
    • /
    • 2005
  • Microstructures according to experimental conditions (pouring temperature, stirring current and stirring time) and hardness according to aging time were investigated for A356 cast aluminum alloy and 7075 wrought aluminum alloy. In pouring temperature control, grains became larger and non-uniform at high temperature, however dendritic shapes were shown at lower temperature. In stirring current control, dendritic grains were not destroyed enough at lower current, however fine grains were agglomerated at higher current. And, in stirring time control, grains were more globular but grew larger and larger with the stirring time increasing.

  • PDF

헬리컬기어의 안내형 단조에 관한 상계해석 (An upper-bound analysis for the guiding type forging of helical gears)

  • 최재찬;최영;탁성준
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1364-1372
    • /
    • 1997
  • In this paper, the forging of helical gears has been investigated. Punch is tooth-shaped as is the die insert. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material of billet flows into the tooth region. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle and friction factor on the forging of helical gears. Some forging experimentswere carried out with aluminum alloy to show the validity of the analysis. Good agreement was found between the predicted values of the forging load and obtained from the experimental results.

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

A Study on the Effect of Powder Forging for Cup-shaped Product

  • Park, Chul-Woo;Park, Jong-Ok;Kim, Young-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.37-42
    • /
    • 2002
  • The purpose of this paper is comparing the forging effect according to the shape of preforms of cup shaped powder forging product, and extending the application of powder forging technology to more complicated cup-shaped products like pistons. In order to achieve this, preforms are provided by compacting, sintering, and machining to 5 different shapes, then forged to the final shape of products. The workability for sintered aluminium powder material was examined and confirmed its slope was 0.5 as known. Density and strain loci of forged products are also evaluated and compared. On the basis of the results, the most effective shape of preform was proposed. The preform for the piston which is 50mm in diameter was prepared and hot forged successfully to the final product.

차량용 Wheel Nut 소재의 보론강적용을 위한 단조공정에 관한 연구 (Study of a Forging Process for the Application of Boron Steel for Automotive Wheel Nut Material)

  • 이권수;안용식
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.41-47
    • /
    • 2017
  • Boron steel (51B20) was cold forged using by new designed dies to apply for automotive aluminum wheel nut. The formability and mechanical properties of boron steel were compared with carbon steel(S45C) which has been used up to date for the wheel nut material. The formability was investigated on the dies designed with various types of punch nose using by FEM. The metal flow and compressive stress on the dies during cold forging were investigated and compared each other. The forging process with a new designed die showed the improved metal flow with a reduced forging load which resulted in the significant increase of the die life. It was recommended that the carbon steel for automotive wheel nut material could be substituted by the boron steel.

알루미늄 6061 합금의 열간단조시 변형율속도 및 변형율에 따른 기계적 성질에 관한 연구 (A Study on the Mechanical Properties with the Strain rate and Strain for Aluminum 6061 Alloy in Hot Forging)

  • 김정식;이영선;김용조;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.154-158
    • /
    • 2002
  • The mechanical properties of Al 6061 excluded bar were deformed in high temperature with the variable deformation conditions and characterized by the tensile test. Three types of different strain rate were experimentally performed by using hydraulic press, crank press and hammer and two types of the nominal strain 0.5 and 0.8 were achieved. To decide optimum forging process, the relationship among the strain rate, strain and mechanical properties was explained by analyzing the microstructures of the forged and heat heated parts. The strength was deeply related with the strain rate due to the dynamic recrystallization (DRX) in hot forging, and the best forging condition was presented in Al 6061 alloy.

  • PDF