• Title/Summary/Keyword: Aluminum Coagulant

Search Result 71, Processing Time 0.025 seconds

Determination of Optimum Coagulants (Ferric Chloride and Alum) for Arsenic and Turbidity Removal by Coagulation

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Jung, Yoo-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.931-940
    • /
    • 2010
  • The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.

Studies on Pollution and Reduction of Synthetic Detergents by Tap Water Treatment (합성세제의 오염과 상수정수처리에 의한 그 제거효과에 관한 조사연구)

  • Kwon, Sook-Pyo;Chung, Yong;Sim, Kyl-Soon
    • YAKHAK HOEJI
    • /
    • v.21 no.4
    • /
    • pp.200-210
    • /
    • 1977
  • This investigation was undertaken from February 1976 to September 1976. The detergents in municipal sewages from the Chung Kae Stream, Ahn Yang Stream, and Bong Won Stream were determined at 1.5ppm, 0.93ppm, and 3.36ppm in average respectively. The concentrations of detergents determined in the Han river were 0.013ppm of Kwang Na Ru, 0.11ppm of Duk Do, 0.370ppm of Bo Kwang Dong, and 0.285ppm of Ka Yang Dong basin respectively. And the potable waters of Sung Book Ku and Sung Dong Ku from Ku Eu water pumping station located up-stream of the Han river were less polluted at 0.045ppm and 0.037ppm in average. Young Deung Po Ku and Su Dae Moon Ku had been relatively polluted at 0.181ppm and 0.133ppm. The coagulant, alum [$Al_{2}(SO_{4})_{3}$] could eliminated the small amount of detergent by coagulation. The eliminated rates were about 13% by 5ppm and 22.7% by 20ppm of aluminum sulfate in sewage contained 10ppm of turbidity. The sand and the charcoal adsorbed some detergent as the following Langmuir's equations: For the charcoal, m/x=0.029.$\times$1/Ce-11.43 For the charcoal, m/x=2.705log1/Ce-5.46 Where m: amount of snad and active carbon used(g) x: amount of detergent adsorbed from liquid(g) Ce:concentration in the liquid at equilibrium(miles) The adsorption effect of sand would be neglected. In the low concentration of detergent solution, one gram of active carbon adsorbed 0.263g of detergent. It was determined that one gram of chlorine reduced 5.5g pf DBS om keeping up 0.2ppm of residual chlorine by disinfection process with chlorine compound.

  • PDF

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

Characterization of Coagulation on Synthetic Polymerization Al(III) Inorganic Coagulants for Water Treatment (상수처리용 합성 무기고분자 Al(III)계 응집제의 응집특성)

  • Han Seung-Woo;Jung Chul-Woo;Kang Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.717-724
    • /
    • 1999
  • This experiment was performed on three parts with prepared coagulants. (1) The characterization of coagulation for PACI coagulants. (2) Comparison of the characterization of coagulation with PAS and PACI coagulants. And (3) Comparison of the characterization of coagulation for the addition of calcium with PACI. Coagulation experiments were conducted with several dosages and pH for each coagulants. For the characterization of coagulation with PACI coagulants, coagulation of Nakdong river waters with three PACls (r=2.0, 2.2, 2.35) showed that the effectiveness of the three coagulants can be considered as r=2.2 > 2.0 > 2.35 which are also the order of higher polymeric aluminum contents. For the comparison of the characterization of coagulation for PAS and PACI coagulants, PAS (r=0.75) coagulants was more effective than other coagulant for the removal of organic matters by sweep floc mechanism with $A;(OH)_{3(S)}$. For comparison of the characterization of coagulation for the addition of calcium with PACI, the presence of divalent cation like $Ca^{2+}$ was supposed to influence the complex formation of organic anions. From the result of test on coagulation at various pH ranges, the PACI was least affected by the coagulation pH, and the addition of calcium to PACI was very effective for the removal of turbidity and organic materials over broader pH range (pH 4-9).

  • PDF

Preparation of Inorganic Coagulants Using Red Mud (적니를 이용한 무기응집제의 제조연구)

  • Kim, Jung-Sik;Lee, Jae-Rok;Han, Sang-Won;Hwang, In-Gook;Bae, Jae-Heum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2085-2095
    • /
    • 2000
  • Red mud is generated as a by-product during the production of aluminum hydroxide from bauxite ore. In this study inorganic coagulants were prepared by leaching aluminum and iron from red mud with acids under various operating conditions. The optimum leaching efficiency of Al and Fe was obtained by contacting red mud with acids of 5M $H_2SO_4$ and 9M HCI with the ratio of 1/10(g/mL) at $85^{\circ}C$ and $25^{\circ}C$, respectively. In addition. the removal experiments of heavy metal ions($Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Cr^{3+}$), turbidity and phosphate phosphorus($PO_4{^{3-}}-P$) in aqueous solutions were also studied in various experimental conditions. As a result, the developed coagulants are found to show a good removal performance of heavy metal ions. turbidity and phosphate phosphorus in aqueous solutions.

  • PDF

Removal Characteristic of Soluble Cs in Water Using Natural Adsorbent and High Basicity Coagulant Poly Aluminium Chloride (천연광물 흡착제 및 고염기도 PAC를 이용한 용존성 Cs의 처리특성)

  • Kim, Bokseong;Kim, Youngsuk;Chung, Yoonsuhn;Kang, Sungwon;Oh, Daemin;Chae, Hojun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.385-390
    • /
    • 2017
  • This study investigated removal characteristic of soluble Cs in water by RPT (Radioactivity pollutant treatment) with coagulation and sedimentation. The RPT conducted with various chemical and natural coagulants to remove the soluble Cs which consisted pre-adsorption, Sedimentation and post-adsorption. Natural absorbent included Illite and zeolite. Especially, Illite divided LPI (Large Particle Illite) and SPI (Small Particle Illite) by grain size. Also, Chemical coagulants included high basicity PAC (poly aluminum chloride). The adsorbent had a plate structure mainly composed of quartz, albite and muscovite. The surface area were $4.201m^2/g$ and $4.227m^2/g$ and the particle sizes were $197.4-840.9{\mu}m$ and $3.28-53.57{\mu}m$, respectively. The adsorption efficiency of the natural Illite was 82.8% for LPI and 85.6% for SPI. The removal efficiency of turbidity, which was an indirect indicator of adsorbent recovery, was 96.4% and 98.3%, respectively.

Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment (정수처리 응집효율 개선을 위한 Al(III)염과 Fe(III)염 응집제의 비교)

  • Han, Seung woo;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.325-331
    • /
    • 2015
  • The experimental results of the characteristics of aluminum based and ferric based coagulants for the Nakdong River water showed that the main hydrolysis species contained in alum and $FeCl_3$ are monomeric species of 98% and 93.3%, respectively. The PACl of r=1.2 produced by the addition of base contained 31.2% of polymeric Al species and the PACl of r=2.2 contained 85.0% of polymeric Al species, as showing more polymeric Al species with increasing r value. Coagulation tests using Al(III) and Fe(III) salts coagulants for the Nakdong River water showed that the coagulation effectiveness of turbidity and organic matter was high in the order of $FeCl_3$ > PACl (r=2.2) > PACl (r=1.2) > alum. $FeCl_3$ has showed better flocculation efficiency than Al(III) salts coagulants. In addition, in case of Al(III) coagulants, the Al(III) coagulants of higher basicity, which contained more polymeric Al species, resulted in better coagulation efficiency for both turbidity and organic matter removed. The optimum pH range for all of the coagulants investigated was around pH 7.0 under the experimental pH range of 4.0~9.5. Especially, the highest basicity PACl (r=2.2) and $FeCl_3$ were considered as more appropriate coagulants for the removal of turbidity in the case of raw water exhibiting higher pH.

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

Development of the Inorganic Coagulants Using Red Mud and Evaluation of Its Coagulation Performance (적니를 이용한 무기응집제의 개발 및 응집성능 평가)

  • Lee, Jae-Rok;Hwang, In-Gook;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • Red mud is generated as a by-product during the production of aluminum hydroxide from bauxite ore. In this study the red mud coagulants were prepared by reacting 100 ml of 5 M $H_2SO_4$ solution with 10g of red mud at $85^{\circ}C$ or by reacting 100ml of 9M HCl solution with 10g of red mud at $25^{\circ}C$. The prepared red mud coagulants were tested for their coagulation performance of pollutants in the municipal and industrial wastewater. In addition, the coagulation performance was compared with that of a commercially available coagulant ($FeCl_3$). As a result, the red mud coagulants were found to have a good removal efficiency of pollutants in the municipal wastewater (turbidity, phosphate phosphorus) and in the plating wastewater (turbidity, $Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Cr^{3+}$). In the experiment to remove COD in the petrochemical wastewater, the COD removal efficiency by the red mud coagulants was a little poor, but it was better than that by $FeCl_3$.

  • PDF

Recovery of Poly(3-hydroxybutyrate) from the Coagulated Cells of Alcaligenes eutrophus. (응집 처리한 Alcaligenes eutrophus 균체로부터 poly(3-hydroxybutyrate)의 회수)

  • 조경숙;홍은화;류희욱;장용근
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.206-212
    • /
    • 1998
  • The effects of the pretreatment with coagulants on the recovery efficiency of poly (3-hydroxybutyrate, PHB) synthesized in Alcaligenes eutrophus were investigated. Al-base or Fe-base coagulants, and the dispersion method of 30% hypochlorite solution and chloroform were used as coagulants and PHB recovery method, respectively The recovery efficiency of PHB from the cells harvested with Al-base coagulants at the range from 0 to 1000 mg-Al/L was similar to that from cells harvested without the coagulants. At these conditions, the concentrations of residual aluminium in the purified PHB were below 250 mg-Al/kg-PHB, indicating the effect of residual aluminum on the characteristics of the purified PHB can be insignificant. When the dosage of coagulants was over 1000 mg-Al/L, the PHB recovery remarkably decreased with increasing the coagulant dosage. However, the PHB recovery could be enhanced by the use of 50% hypochlorite solution instead of 30% hypochlorite solution. Even though the reduction of PHB recovery efficiency was not found by using Fe-base coagulants, the purified PHB was stained pale red due to residual iron, These results suggest that the use of Al-base coagulants did not exert bad influence on neither PHB recovery efficiency and PHB purity.

  • PDF