• 제목/요약/키워드: Aluminum Coagulant

검색결과 71건 처리시간 0.034초

알루미늄계 무기 고분자 응집제에서 알루미늄 폴리머 생성과 응집효율과의 상관관계 (The Correlation Between the Polymeric Aluminum Species of Inorganic Coagulant and Its Coagulation Efficiency)

  • 김지연;이창하;손진식;윤제용
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.331-336
    • /
    • 2004
  • The correlation between polymeric aluminum species of coagulant and its coagulation efficiency was investigated using several commercial polymeric Al(III) inorganic coagulants (Poly Aluminum Hydroxy Chloro Sulfate 2020 (PAHCS2020), Poly Aluminum Hydroxy Chloro Sulfate 2500 (PAHCS2500) which was introduced in Korean water treatment plants. The poly aluminum chloride (PAC), Poly Aluminum Hydroxide Chloride Silicate (PACS)) and the aluminum salts ($AlCl_3$, Alum ($Al_2(SO_4)_3$)) were used for the purpose of comparison. The comparison of the coagulation efficiency of each coagulant was made by turbidity removal through the standard jar testing procedure and the determination of the hydrolytic Al(III) species was made by the ferron method which can differentiate the monomeric aluminum species from the polymeric aluminum species. Overall, PAHCS2020 and PAHCS2500 showed the better performance in turbidity removal than the aluminum salts. The performance of coagulation was even better without adjustment of pH during the coagulation experiment. The positive correlation between polymeric aluminum species of coagulant and coagulation efficiency was found.

수처리 잔류 Sludge의 산처리에 의한 알루미늄계 응집제 회수 방안 (Recovery Process of Aluminum Coagulant by Acidic Extraction of Residual Sludge Produced in Water Treatment)

  • 김동수;표나영;권영식
    • 자원리싸이클링
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 1998
  • 알루미늄계 응집제를 사용한 수처리시 발생하는 슬러지를 산으로 처리하여 응집제를 회수하는 방안과 그로 인한 잔류 슬러지의 부피 및 질량감소, 탈수성질의 변화, 그리고 산처리시의 영향요인 등에 관해 논의하였다. 회수된 응집제의 특성은 알루미늄의 함량, 응집 효율성, 잔류 불순물들에 의해 평가될 수 있다. 산처리후 발생하는 잔류 슬러지의 처리방법 및 실제 공정 운영에의 적용사례 등에 관해서도 논의하였다.

  • PDF

수중 Humic Acid의 효율적 응집처리와 잔류알루미늄 감소방안에 관한 연구 (A Study on the Coagulation of Aquatic Humic Acid and Reducing Residual Aluminum)

  • 김수연;정문호;두옥주
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.38-46
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the effective coagulation of commercial humic acid which is well known as major precursor of trihalomethane, with LAS and PAC and to quantify the residual aluminum in the treated water. Then the optimum pH, the dosage of coagulant were determined. 1. Humic acid concentrati6n, UV absorbance and color were well correlated and UV absorbance(254 nm) and color seem to be used in quntificative analysis of humic acid of same kind. 2. Optimal dosage of LAS and PAC increase as humic acid concentration increases. And optimal pH range for coagulation using LAS is pH 5.5-7.0 and pH 3.5-6.5 for PAC. Within these ranges the removal efficiency is 90-99%. 3. The results of quantification of residual aluminum in treated water shows that minimal aluminum remains on the optimal coagulation condition. But the residual aluminum increses as the dosage of coagulant is beyond the optimal range. Thus the dosage of coagulant should be chosen with the condition on which humic acid removal is maximum and the residual aluminum concentration is minimum. 4. In the water treatment process the raw water pH range is 6.5-8.0, and it seems to be possible to remove humic acid by charge neutralization not by sweep floc. But it should be considered that different commercial humic acids have different physical and chemical characteristics.

  • PDF

ENHANCED REMOVAL OF RESIDUAL ALUMINUM AND TURBIDITY IN TREATED WATER USING POLYMERS

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • 제10권4호
    • /
    • pp.155-164
    • /
    • 2005
  • This study investigated the possibility of reducing the residual aluminum (Al) in the treated water using polymers. Two raw waters (lake and river water) and three kinds of polymers (coagulant, flocculant, and filtration aids) were used for this purpose. This study found that coagulation at the high dose did not necessarily lead to the high concentration of the residual Al in the treated water. The coagulation efficacy was found more important in determining the residual Al than the coagulant dose. The use of a polymer enhanced the removal of turbidity as well as the residual Al. The coagulant aid removed the dissolved Al as well as the particulate Al by helping the coagulation and the solid-liquid separation. The flocculant aid and the filtration aid preferentially removed the particulate Al while helping the solid-liquid separation. The filtration aid reduced the residual Al substantially more effectively than the flocculant aid. The polyamine-based coagulant aid (FL) showed the better performance in reducing the residual Al and turbidity than DADMAC (WT). The cationic flocculant aid with weak charge density and the medium molecular weight (SC-020) showed the best performance in reducing the residual Al.

에폭시수지 공정에서 발생되는 고염 폐수로부터 황산알루미늄과 PAC 응집제를 이용한 응집/고액분리 조건 최적화 (Optimizing of Coagulation and Solid-Liquid Separation Conditions Using Aluminum Sulfate and Poly-Aluminum Chloride Coagulants from Brine Wastewater Discharged by the Epoxy-resin Process)

  • 이창한;김유진;문성현;권성헌;안갑환
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, solid-liquid separation conditions for coagulation and sedimentation experiments using inorganic coagulant (aluminum sulfate and Poly-Aluminum Chloride (PAC)) were optimized with brine wastewater discharged by the epoxy-resin process. When the turbidity and suspended solid (SS) concentration in raw wastewater were 74 NTU and 4.1 mg/L, respectively, their values decreased the lowest in a coagulant dosage of 135.0 - 270.0 mg Al3+/L. The epoxy resin was re-dispersed in the upper part of wastewater treated above 405.0 mg Al3+/L. The removal efficiencies of turbidity and SS via dosing with aluminum sulfate and PAC were evaluated at initial turbidity and SS of 74 - 630 NTU and 4.1 - 38.5 mg/L, respectively. They increased most in the range from 135.0 - 270.0 mg Al3+/L. The solid-liquid separation condition was quantitatively compared to the correlation of SS removal efficiency between the coagulant dosage and SS concentration based on the concentration of aluminum ions. The empirical formula, R = beaD, shows the relationship between SS removal efficiency (R) and coagulant dosage (D) at 38.5 mg/L; it produced high correlation coefficients (r2) of 0.9871 for aluminum sulfate and 0.9751 for PAC.

상수원수 중 잔류알루미늄 제거에 관한 연구 (황토와 R-Calmont를 이용하여) (The Study on Removal of Residual Aluminum in Raw Water)

  • 이지헌;김환범;안길원;박찬오;김익산;이종현;박혜영;박송인
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.57-68
    • /
    • 1998
  • This study was surveyed to examine the removable ability of residual aluminum with the coagulants(LAS, PAC) and the auxiliary coagulants(Loess, R-calmont) on raw water. The leaching test of the auxiliary coagulant showed that the loess contained a lot of Al, Fe and Mn. On the reverse, the R-calmont was a little. Most of the loess were composed of $SiO_{2}$ 53.25%, $Al_{2}O_{3}$ 29.28%, $Fe_{2}O_{3}$ 10.73% and Si/Al ratio was 3.08. In using both LAS vs. loess and PAC vs. loess as the coagulated material, the removal of residual aluminum was the highest as 96.3%, 96.6% respectively, and that of the residual turbidity was 95.0% when PAC vs. R-calmont was dosed 0.2mg/L. Also, loess showed better than R-calmont in the removable efficiency of aluminum and turbidity. When the setting time of auxiliary coagulant was input ar the same time with coagulant, the removal aluminum was the highest as 93.3% to 96.6%.

  • PDF

폴리염화알루미늄 과량주입에 의한 고(高) pH 원수의 수처리효율 개선 (Improvement of Water Treatment Efficiency by Poly Aluminum Chloride Overdosing in High pH Raw Water)

  • 임재철;김진근
    • 상하수도학회지
    • /
    • 제23권1호
    • /
    • pp.39-46
    • /
    • 2009
  • A method to improve water treatment efficiency by coagulant overdosing for high pH raw water at a drinking water treatment plant (WTP) which had no pH adjusting facilities was investigated. Poly aluminum chloride (PACl) was used for coagulant, and turbidity removal efficiency was evaluated as a function of PACl dosage increases. pH and turbidity of supernatant of jar-tester were 7.10 and 0.50 NTU respectively, when the turbidity, pH, alkalinity, water temperature, conductivity of raw water were 1.75 NTU, 9.38, 46.5 mg/L, $6.4^{\circ}C$, $400{\mu}s/cm$, respectively. Turbidity of settled water was reduced from 2.18 NTU to 0.28 NTU (87% reduction) when PACl dosage was increased from 16 mg/L to 45 mg/L at a full scale WTP. This can be attributed to the recovery of coagulant efficiency by pH reduction with the increase of coagulant dose, however coagulation efficiency was reduced with the formation of Al(OH)4- by PACl addition at higher pH. Coagulant overdosing was proven to be a rapid and effective method for high pH raw water, which can be applied at drinking WTP.

정수처리공정에서 잔류 알루미늄 최소화 방안 (Minimizing of Residual Aluminum in Water Treatment Process)

  • 이미영;조덕희;박종현
    • 대한위생학회:학술대회논문집
    • /
    • 대한위생학회 2004년도 심포지움
    • /
    • pp.54-65
    • /
    • 2004
  • Use of aluminum salts as coagulants In water treatment may lead to increased concentrations of aluminum in finished water. Aluminum is a suspected causative agent of neurological disorders such as Alzheimer's disease. The objective of this study was to examine variation and minimizing in residual aluminum concentration during water treatment process. The aluminum sources at Bokjeong Water Plant were present naturally aluminum in the raw water and derived due to use of PACS as a coagulant. Much of the raw water total aluminum were in particulate and suspended aluminum. In this study was compared the optimize condition to minimize the concentration of residual aluminum using Jar-test with the various coagulants such as alum, PAC, PACS. The results indicated that PACS was more effective than alum, PAC and insufficient or excessive alum, PAC, PACS addition led to increase residual aluminum. Adjustment raw water pH $6.5\~7.0$ before coagulation using PACS was capable of minimizing total and dissolved aluminum. Thus it is important that the optimal dosage of coagulant and the optimal pH adjustment before coagulation can decided to minimize the concentration of residual aluminum in treated water.

  • PDF

적니로부터 철과 알루미늄의 침출 및 응집제의 제조 (Leaching of Iron and Aluminum from Red Mud and Preparation of Coagulants)

  • 이재록;황인국;배재흠
    • 청정기술
    • /
    • 제15권1호
    • /
    • pp.38-41
    • /
    • 2009
  • 적니(red mud)는 보오크싸이트로부터 수산화알루미늄/알루미나를 제조하는 Bayer 공정에서 부산물로 발생되는 폐기물이다. 본 연구에서는 적니로부터 철과 알루미늄을 염산으로 침출시켜 폐수처리용 응집제를 제조하였다. 적니응집제를 합성폐수에 투입한 후 조절된 pH가 증가함에 따라 중금속이온 제거율이 증가하였다. 적니응집제 제조 시에 적니의 양이 증가할수록 Fe의 침출효율은 낮아졌으나, 적니응집제의 pH는 적니의 양이 증가할수록 높아졌다. 적니응집제와 물을 혼합한 용액을 다시 적니와 반응시켜 Fe 및 Al의 농도가 더 증가되고, pH가 향상된 침출액을 얻었다. 이 침출액의 pH는 다른 응집제 $FeCl_3$$Fe_2(SO_4)_3$의 pH와 비슷한 값을 보였다.

알루미늄 응집제를 사용한 호수수질 개선 사례 연구 (The Application of Aluminum Coagulant for the Improvement of Water Quality in Three Recreational Ponds)

  • 강필구;김범철
    • 생태와환경
    • /
    • 제36권4호통권105호
    • /
    • pp.447-454
    • /
    • 2003
  • 부영양호의 수질정화를 위하여 알루미늄 응집제를 호수에 첨가하고 조류와 부유물의 침강제거효과, 및 인의 감소효과를 측정하였다. 서울 석촌호와 강원대학교 구내 연못을 대상으로 8회에 걸쳐 첨가량을 달리하여 실시하였다. 7회의 처리에서는 황산알루미늄을 사용하였고 1회는 PAC를 사용하였다. 부유물질의 침강제거효과는 첨가량에 따라 좌우되었다. 10.0 mgAl/l를 첨가한 경우에는 부유물질, 조류, 인 등이 완전히 제거되었으나, 3.3 mgAl/l와 1.8 mgAl/l를 첨가한 경우에는 부분적인제거 효과가 있었다. 그러나 0.45 mgAl/l로 첨가한 경우에는 거의 개선효과가 보이지 않았다. 알루미늄 첨가가 부유물을 침전제거에 효과를 나타내기 위해서는 최소역치 (약 5 mgAl/l) 이상을 투여하여야 하는 것으로 결론지을 수 있다. 효과 지속시간은 외부로부터의 추가부하량 유입에 의해 좌우되는 것으로 보인다. 석촌호에서는 인근 하천수의 펌핑에 의해 곧 다시 혼탁해 졌으며, 구내연못에서는 강우후 주변의 토사가 유입되거나 지하수 펌핑으로 영양염류가 유입되면 곧 다시 조류가 번성하고 혼탁해 졌다. 응집제 투여의 결과로 pH가 지나치게 낮아지는 피해나 어패류에 대한 유해성 징후는 발견되지 않았다. 외부 오염원을 제거할 수 없는 호수에서는 응집제의 투여가 호수수질 개선의 임시적 대안으로 활용될 수 있을 것으로 보인다.