• Title/Summary/Keyword: Aluminum Alloy 2024

Search Result 75, Processing Time 0.027 seconds

A Study on Fatigue Crack Retardation Using NDT Test in a Hybrid Composite Material Reinforced with a CFRP (CFRP로 보강한 하이브리드 복합재료의 비파괴검사법을 이용한 피로균열 지연의 연구)

  • 윤한기;박원조;허정원
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • New hybrid composite material CPAL(Carbon Patched ALuminum alloy), an Al2024-T3 plate doubleside reinforced with carbon/epoxy laminates were made. Fatigue crack growth tests were carried out at R=0.2, 0.5 in the CPAL specimens. The retardation mechanism and behavior of fatigue crack growth were examined basing on investigation of the crack and the delamination using a X-Ray and a ultrasonic C-Scan. The fatigue crack growth rates of CPAL specimens were remarkedly retarded compared to that of the Al2024-T3 specimen. The retardations amounts of the fatigue crack growth rates get higher in $0^{\circ}$/$90^{\circ}$ CPAL specimen than in $\pm$$45^{\circ}$ CPAL specimen, and get higher at R=0.2 than at R=0.5. The retardation of fatigue crack growth rates in CPAL specimen was generated by the crack bridging mechanism, that is the behavior that the fibers in CFRP layers decrease the COD in the Al2024-T3 plate.

  • PDF

The Effect of Pressure on Liquid Segregation in Direct Rheo-Forging Process of Aluminum Alloys (알루미늄 소재의 레오로지 직접단조공정에서 가압력이 액상 편석에 미치는 영향)

  • Oh, S.W.;Bae, J.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.178-186
    • /
    • 2007
  • Rheo-forging process of aluminum alloy is suitable for large parts of net shape without defects and excellent mechanical properties in comparison with conventional die casting and forging process. To control the microstructure of the product with high mechanical properties in rheo-forming, solid fraction is required to prevent porosity and liquid segregation. Therefore, in rheo-forging process, die shape, pressure type and solid fraction are very important parameters. The defects such as porosity, liquid segregation and unfitting phenomena occur during rheo-forging process. To prevent these defects, mechanical properties and microstructure analysis of samples versus the change of pressure are carried out and the problem and its solutions are proposed. Also, the mechanical properties versus various pressures were compared with and without heat treatment. The alloys used for rheo-forming are A356 and 2024 aluminum alloy. The rheology material is fabricated by electromagnetic process with controlling current and stirring time.

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

Experimental study on fatigue crack propagation of fiber metal laminates

  • Xie, Zonghong;Peng, Fei;Zhao, Tianjiao
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.145-157
    • /
    • 2014
  • This study aimed to investigate the fatigue crack growth behavior of a kind of fiber metal laminates (FML) under four different stress levels. The FML specimen consists of three 2024-T3 aluminum alloy sheets and two layers of glass/epoxy composite lamina. Tensile-tensile cyclic fatigue tests were conducted on centrally notched specimen at four stress levels with various maximum values. A digital camera system was used to take photos of the propagating cracks on both sides of the specimens. Image processing software was adopted to accurately measure the length of the cracks on each photo. The test results show that: (1) a-N and da/dN-a curves of FML specimens can be divided into transient crack growth segment, steady state crack growth segment and accelerated crack growth segment; (2) compared to 2024-T3 aluminum alloy, the fatigue properties of FML are much better; (3) da/dN-${\Delta}K$ curves of FML specimens can be divided into fatigue crack growth rate decrease segment and fatigue crack growth rate increase segment; (3) the maximum stress level has a large influence on a-N, da/dN-a and da/dN-${\Delta}K$ curves of FML specimens; (4) the fatigue crack growth rate da/dN presents a nonlinear accelerated increasing trend to the maximum stress level; (5) the maximum stress level has an almost linear relationship with the stress intensity factor ${\Delta}K$.

Incorporation of Montmorillonite/Silica Composite for the Corrosion Protection of an Epoxy Coating on a 2024 Aluminum Alloy Substrate

  • Thai Thu Thuy;Trinh Anh Truc;Pham Gia Vu
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 2023
  • Layered silicate clay montmorillonite (MMT) has been used in nanocomposite coating to improve corrosion protection by reinforcing the barrier property. The better dispersion of MMT in the coating produces a higher barrier effect. Pretreatment with MMT could favor the delamination of clay platelets, facilitating MMT dispersion in the coating. In the present work, a montmorillonite/silica (MMT/Si) composite was prepared by the in situ sol-gel method. x-ray diffraction measurements and field-emission scanning electron microscopy observations showed silica crystal formation and increased basal spacing between the MMT platelets. Composite MMT/Si particles were introduced in an epoxy resin to reinforce the corrosion protection of the coating applied on the AA2024 surface. Electrochemical impedance spectroscopy (EIS) was performed to characterize the protective property of the coating. The results demonstrated the high barrier effect of the coating containing 5 wt% of MMT/Si. Adhesion evaluation after a salt spray test exhibited a high adherence to the epoxy coating containing MMT/Si.

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

Heat Transfer Analysis of Friction Welding of A2024 to SM45C (A2024 와 SM45C 마찰용접의 열전달 해석)

  • 이상윤;윤병수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • The hear transfer mechanism initiating the friction welding is examined and a transient three dimensional heat conduc-tion model for the welding of two dissimilar cylindrical metal bars is investigated. The cylindrical metal bars are made of materials made of A2024 and SM 45C. Numerical simulations of heat flow are performed using the finite volume method. Respectively. Commercial FLUENT code is used in the heat flow simulation and maximum temperature and distribution of temperature are calculated. Temperature of friction welded joining face is compared with the temperature distribution measured by experiment and numerical simulation. The maximum temperature of friction welded joining face is lower than melting point of A2024-T6 aluminum alloy using insert metal. The temperature distribution of friction welded join- ing face with insert metal is more uniform than that of without inset metal.

  • PDF

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 피로파괴거동에 관한 연구)

  • Jang, Jeong-Won;Sohn, Se-Won;Lee, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.13-18
    • /
    • 1999
  • 섬유강화금속적층재(Fiber Reinforced Metal Laminates. FRMLs)는 고강도금속과 섬유강화복합재료(Fiber Reinforced Composite Materials)를 적층한 새로운 종류의 하이브리드 재료이다. 국산 아라미드 섬유인 헤라크론(Heracron, 코오롱)과 국내 복합재료 제작기술(한국화이바)을 사용하여 섬유강화금속적층재를 제작하고, 이를 HERALL(Heracron Reinforced Aluminum Laminate)이라 명명하였다. HERALL(Heracron Reinforced Aluminum Laminate)의 피로균열성장특성 및 피로균열진전 방해기구를 ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) 및 Al 2024-T3과 비교해석하였다. HERALL과 ARALL은 균열진전을 저지하는 아라미드 섬유로 인해 뛰어난 피로균열성장특성 및 피로저항성을 보여주었다. 아라미드 섬유의 균열브리드징으로 인한 $K_{max}$의 감소량과 Al 2024-T3의 균열닫힘으로 인한 $K_{max}$의 증가량을 구할 수 있는 응력-COD법을 사용하여 실제로 균열성장에 영향을 준 유효응력확대계수범위를 측정하였다. 균열선단으로부터 균열을 가공하면서 COD 변화량을 측정하여 균열브리징 영역을 구하였다.

  • PDF

Fatigue Crack Growth Properties of Friction Stir Welded Dissimilar Aluminum Alloys (이종알루미늄합금 FSW 접합부의 피로균열진전 특성)

  • Lee, Won-Jun;Lee, Hyo-Jae;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • The presence of a crack can increase the local stress or strain, which can cause inelastic deformation and significantly reduce the life of a component or structure. Therefore, in this study, the fatigue crack growth (FCG) behaviors of friction stir welded Al 2024-T3 and Al 7075-T6 specimens were examined, with fatigue cracks growing parallel to the dynamically recrystallized zone at variable ${\Delta}K$ values and an R ratio of 0.3. In addition, the FCG values of the base metal Al 2024-T3 and Al 7075-T6 were tested under the same conditions and parameters as comparative groups. The results showed that compared with the base metal Al 2024 specimen, which had the best fatigue property, the welded specimen had only 88% of the fatigue cycles.