• 제목/요약/키워드: Aluminum 2024

검색결과 163건 처리시간 0.027초

Simulation of Rayleigh wave's acoustoelastic effect in concrete, aluminum and steel

  • Guadalupe Leon;Hung-Liang (Roger) Chen
    • Structural Engineering and Mechanics
    • /
    • 제91권4호
    • /
    • pp.357-368
    • /
    • 2024
  • In this study, a finite-element surface wave simulation using an effective elastic constant (EEC) was developed to calculate the Rayleigh wave velocity change and polarization change in aluminum, steel, and concrete under uniaxial stress. Under stress, an isotropic medium behaves like an anisotropic material during the wave propagation. The EEC is an equivalent anisotropic stiffness matrix which was derived to simulate the acoustoelastic effect using classical finite-element software. The vertical and horizontal surface displacements located 8-mm from a 1-㎲ excitation load were used to find the acoustoelastic coefficients kv and kp and compared to an analytical scheme. It was found that kv for aluminum and concrete matched within 4% of the analytical solution. The finite-element simulation showed that the Rayleigh wave arrival time for concrete and aluminum was greatly influenced by the stress level. Thus, predicting the stress level using concrete and aluminum's acoustoelastic effect is applicable.

Al 2024-T3 판에 AFRP를 접착한 복합재료의 인장강도에 대한 통계적 특성 (Statistical Properties for Tensile strength of Composite Materials Patched with AFRP on 2024-T3 Aluminum Alloy plate)

  • 윤한기;안원기;허선철
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1810-1816
    • /
    • 2000
  • A hybrid composite APAL(Aramid Patched Aluminum alloy) , consisting of Al 2024-T3 aluminum alloy plate sandwiched between two aramid/epoxy laminates, was developed. The characteristics of tensile s trength were investigated and statistical properties of tensile strength were studied in terms of Weibull distribution probability with number of AFRP laminates. The tensile strength of APAL was inproportional to number of AFRP laminates and followed the two-parametic Weibull distribution.

2024 Al합금과 아연도금강판의 점용접에 관한 품질평가 (The Quality Evaluation on Resistance Spot Welding of 2024 Aluminum Alloy and Zinc Coated Steel)

  • 허인호;이철구;채병대
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.379-383
    • /
    • 2001
  • Resistance spot welding has been widely used in the sheet metal joining processes because of low cost, high productivity and convenience. Recently, automobile and aerospace industries are trying to replace partly steel sheets with aluminum alloy sheets. But in the case of dissimilar materials, to apply resistance spot welding has been known to be very difficult owing to the effect of melting temperature. On this study, an effort was made to apply spot welding of dissimilar sheet metals, 2024 aluminum alloy and zinc coated steel sheet, evaluate the spot weld quality with tensile-shear strength test and nondestructive evaluation technique, C-scan image methodology. In this study results, as the current below 11 kA, melting of materials is not achieved well. Also as the current exceeds to 13.5 kA, the more spatters happen at welded zone and tensile-shear strength lowered. So, the feasibility of C-scan image technique proposed in the study is found to be suitable evaluation method for resistance spot weldability.

  • PDF

박판 Al 2024-T3 합금재료의 피로균열성장지연거동과 피로수명예측 (Retardation Behavior of Fatigue Crack Growth and Fatigue Life Prediction of Thin Sheet Al 2024-T3 Alloy)

  • 김승권
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.31-37
    • /
    • 2011
  • Sheet aluminum alloys have been used in manufacturing of machine structures. In fatigue crack propagation behavior of thin sheet aluminum alloys, it is important that fatigue crack growth rate is affected by crack closure phenomenon. In this work, we analyzed the characteristics of fatigue crack propagation behavior in experiment of constant stress condition for thin sheet Al 2024-T3 alloys, and identified the retardation behavior of crack growth by comparing experimental results of thin and thick plate specimen. We attempt to operate the fatigue life estimating process using the fatigue related material constants from referred fatigue crack propagation analysis. And we analyzed the experimental and prediction results of fatigue life of thin sheet aluminum alloy in order to identify the relation between retardation behavior of fatigue crack growth and crack closure phenomenon.

용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성 (High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting)

  • 임석원;유전의칙
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

고강도 알루미늄 합금의 프레팅 피로거동 (Fretting Fatigue Behavior of High Strength Aluminum Alloys)

  • 최성종;이학선;이철재;김상태
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

WEAR BEHAVIOR OF SiC-PARTICLE REINFORCED ALUMINUM MATRIX COMPOSITES IN VARIOUS ENVIRONMENTS

  • Miyajima, T.;Yamamoto, T.;Iwai, Y.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.241-242
    • /
    • 2002
  • Wear behavior or SiC-particle reinforced aluminum matrix composites (MMC) were investigated by pin-on-disk tests in vacuum with various pressures, argon, and air with various levels of humidity. The wear rate of 2024Al and MMC increased in the following order: in a vacuum at $5.0{\times}10^{-4}$ Pa, at 1.0Pa, in argon at 0% RH, in argon at 60% RH, in argon at 90% RH, in air at 0% RH, in air at 60% RH and in air at 90% RH. In other words, the influence or environment on wear becomes stronger in the following order: moisture, oxygen, and a combination of moisture and oxygen. In various environments, the difference of the wear rate of 2024Al and MMC was compared. In argon and air at 0% RH, the wear rates of MMC were higher than that of 2024Al. In contrast, in argon and air at 60, 90% RH, the wear rates of MMC were lower than that of 2024Al.

  • PDF

알루미늄 합금 제조공정에서의 선형계획모델 기반 재활용 원재료 혼합 비율 결정 알고리즘 (A Linear Programming-Based Algorithm for Raw Recycled Material Mixtures in the Aluminum Alloy Fabrication Process)

  • 강민주;김지훈;송경진;변유진;김재곤
    • 산업경영시스템학회지
    • /
    • 제47권2호
    • /
    • pp.40-47
    • /
    • 2024
  • As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.

Rheo-compocasting법으로 제조된 알루미나 입자강화 Al합금 복합재료의 계면반응 (Interfacial Characteristics of $Al-2024/Al_2O_{3p}$ Composite Fabricated by Rheo-compocasting)

  • 현석종;예병준
    • 한국주조공학회지
    • /
    • 제13권3호
    • /
    • pp.285-294
    • /
    • 1993
  • Aluminum alloy 2024 matrix composites reinforced with $Al_2O_3$ particles, were prepared by rheo-compocasting, a process which consists of the incoporation distribution of reinforcement by stirring within a semi-solid alloy. The microstructures and characteristics of the interfaces have been studied using optical microscope and scanning electon microscope in 2024 aluminum alloy composites reinforced with $Al_2O_3$ particles. The main results are as follows: (1) $Al_2O_3$ particles were well distributed in composites by using rheo-compocasting. (2) As the addition of $Al_2O_3$ particle increases, the average dendrite numbers and the hardness were increased. (3) Interaction between $Al_2O_3$ particles and alloy 2024 resulted in the formation of Mg and Cu element rich region around the $Al_2O_3$ particles.

  • PDF

알루미늄 합금 2024의 와이어 컷 방전가공에서 방전 에너지가 표면 거칠기에 미치는 영향 (The effect of Surface Roughness on Wire-cut Electric Discharge Machining of Discharge Energy in Aluminium Alloy 2024)

  • 류청원;최성대;이순관
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.714-719
    • /
    • 2011
  • The surface roughness depending on the machining method is very important because is produce a finished product through riveting, sealing, bonding, and special paint in order to curb the turbulence and air resistance which occur between the sheets. Aluminum alloy 2024 which is widely used for interior and exterior material of aircraft are tested. Jin-young JW-60C wire cutting machine was used in this experiment. In this paper, the experimental investigation has been performed to find out the influence of the surface roughness and surface shape characteristics on the wire-cut EDM of discharge energy in aluminium alloy 2024. The selected experimental parameters are peak current, no-load voltage, off time and feed rate. The experimental results give the guideline for selecting reasonable machining parameters. The high discharge energy on the idle time, almost no change in surface roughness can be seen.