• 제목/요약/키워드: Aluminium alloy piston

검색결과 5건 처리시간 0.015초

공기 압축기의 피스톤용 알루미늄 합금 소재 개발 (Development of Aluminium Alloy for Piston of Air Compressor)

  • 김순경;김문경
    • 한국기계가공학회지
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 2008
  • It is important not only to reduce the casting defects of piston but also to improvement in the mechanical properties(hardness) of piston for the air compressor. The blow hole is typical casting defects in the conventional cast of aluminium alloy(AC8A-T6) piston. Because of the heat treatment method, mechanical properties of the aluminium alloy for piston was decided on the heat treatment method and cycle. Therefore, we tested on the development of mechanical properties and on the casting defects of piston for the air compressor in accordance with the heat treatment and casting condition. After the heat treatment and casting was carried out as several times, and was compared with the imported piston. As a result of several investigations; microstructure, hardness and casting defects of piston was changed under the influence of the heat treatment and casting method. When the cooling rate was controlled and the uni-cast method used, it bas the same mechanical properties and microstructure.

  • PDF

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

A study on the Powder Forging of Aluminum Alloy Pistons

  • Park, Jong-Ok;Park, Chul-Woo;Kim, Young-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.69-74
    • /
    • 2001
  • Powder forging technology has been introduced to manufacture the parts for vehicles. This paper describes the process conditions for the powder forging of aluminium also piston for vehicles including the determination of composition of aluminum alloy by experiment, preform design by FEM simulation, coed compaction of aluminum alloy powder, sintering of preform, and the experiment of powder forging. The mechanical properties such as hardness, tensile strength, and elongation of the farmed piston were invested and compared with casted piston and forged piston. The tensile strength and hardness of the piston formed by powder forging technology were much more excellent than other pistons.

  • PDF

컵형상 분말단조품의 예비성형체 형상에 따른 단조효과에 관한 연구 (A Study on Forging Effect of Cup-Shaped Powder Forging Product According to the Shape of Preforms)

  • 박종옥;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.63-68
    • /
    • 2000
  • The purpose of this paper is to compare the forging effects according th the shape of preforms of cup shaped powder forging product, and extend the application of powder forging technology to more complicated cup-shaped products like pistons. In order to this, preforms are provided by compacting, sintering, and machining in various shapes, then forged to final shape of products. The workability for sintered aluminium powder material is examined. Density and strain loci of forged products are compared, and the most effective shape of preform is proposed. The preform for a piston of 50mm in diameter is provided and hot forged to final product.

  • PDF

A Study on the Effect of Powder Forging for Cup-shaped Product

  • Park, Chul-Woo;Park, Jong-Ok;Kim, Young-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.37-42
    • /
    • 2002
  • The purpose of this paper is comparing the forging effect according to the shape of preforms of cup shaped powder forging product, and extending the application of powder forging technology to more complicated cup-shaped products like pistons. In order to achieve this, preforms are provided by compacting, sintering, and machining to 5 different shapes, then forged to the final shape of products. The workability for sintered aluminium powder material was examined and confirmed its slope was 0.5 as known. Density and strain loci of forged products are also evaluated and compared. On the basis of the results, the most effective shape of preform was proposed. The preform for the piston which is 50mm in diameter was prepared and hot forged successfully to the final product.