• Title/Summary/Keyword: Aluminium Thin Film

Search Result 70, Processing Time 0.026 seconds

INVESTIGATIONS OF CONDUCTION MECHANISM OF ORGANIC MOLECULES USED AS BUFFER HOLE INJECTING LAYER IN OLEDS

  • Shekar, B. Chandar;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.966-969
    • /
    • 2003
  • Thin film capacitors with Al-Polymer-Al sandwich structure were fabricated. The bottom and top aluminium (Al) electrodes were deposited by vacuum evaporation and copper phthalocyanine (CuPc), polyaniline-emeraldine base (Pani-EB) and cobalt phthalocyanine/polyaniline - emeraldine base (CoPc /Pani-EB) blend films (which can be used as buffer hole injection layer in OLEDs) were deposited by spin coating technique. X-ray diffractograms indicated amorphous nature of the polymer films whose thicknesses were measured by capacitance and Rutherford Backscattering Spectrometry (RBS) methods. AC conduction studies revealed that the conduction mechanism responsible in these films is variable range hopping of polarons. From D.C conduction studies, it is observed that, the nature of conduction is ohmic in the lower fields and at higher fields the dominating D.C conduction is of Poole-Frenkel type.

  • PDF

A STUDY ON THE ELECTRICAL CHARACTERISTICS IMPROVEMENTS OF PENTACENE-BASED ORGANIC THIN FILM TRANSISTORS (Pentacene을 이용한 유기 TFT의 전기적 특성 향상에 관한 연구)

  • Lee, Jong-Hyuk;Park, Jae-Hoon;Ryu, Se-Won;Kim, Hyung-Joon;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1515-1517
    • /
    • 2001
  • In this work the electrical characteristics of organic TFTs with the semiconductor-insulator interfaces have been interested. Pentacene is used as an active semiconducting layer. The semiconductor layer of pentacene was thermally evaporated in vacuum at a pressure of about $2{\times}10^{-6}$ Torr and at a deposition rate of 0.3$\AA$/sec. Aluminium and gold were used for gate and source/drain electrodes. before pentacene is deposited on the insulator, the gate dielectric surfaces of two samples were rubbed with lateral and perpendicular to direction of the channel length respectively.

  • PDF

ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS USING FLEXIBLE SUBSTRATE (Flexible한 기판을 사용한 유기 박막 트랜지스터의 전기적 특성 연구)

  • Lee, Jong-Hyuk;Kang, Chang-Heon;Hong, Sung-Jin;Kwak, Yun-Hee;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1590-1592
    • /
    • 2002
  • In this work the electrical characteristics of organic TFTs using organic insulator and flexible polyester substrate have been investigated. Pentacene and PVP(polyvinylphenol) are used as an active semiconducting layer and dielectric layer respectively. Pentacene was thermally evaporated in vacuum at a pressure of about $1{\times}10^{-6}$ Torr and at a deposition rate of $0.5{\AA}$/sec, and PVP was spin-coated. Aluminium and gold were used for gate and source/drain electrodes. 0.1mm thick flexible polyester substrate was used instead of glass or silicon wafer.

  • PDF

A Preparation of Copper Phthalocyanine Photoreceptor by an Aqueous Coating Method and Study of Dark Decay and Photoinjection Efficiency (신규 제작법을 이용한 Copper Phthalocyanine 전자사진 감광체의 개발과 Dark Decay와 Photoinjection Efficiency에 관한 연구)

  • 이상남
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.11 no.1
    • /
    • pp.103-122
    • /
    • 1993
  • A cause and counterplan of the increase in dark decay rate of$\varepsilon$-CuPc/PVCz photoreceptor which is consist of the carrier generation layer (CGL) of$\varepsilon$type copper phthalocyanine ($\varepsilon$-CuPc) thin film by an aqueous coating method and the carrier transport layer (CTL) of polyvinylcarbazol (PVCz) by spin coating, are studied in this paper. Electrochemical deposition of CGL was accompanied by an increase in work function of the aluminium substrate during the processes and the enhanced work function 5.3 eV rose above the ionization potential 5.16 eV of $\varepsilon$-CuPc. This resulted in the increased injection of holes from substrate into CGL and a fast dark decay rate. Improved photoreceptor, an electron-transport $\varepsilon$-CuPc/TNF photoreceptor, led to lowing of dark decay rate and increasing of photosensitivity. The carrier generation efficiency (ηg), carrier injection efficiency (ηi) and xerographic gain (G) of the $\varepsilon$-CuPc/TNF photoreceptor were obtained by XTOF method and PIDC.

  • PDF

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

Characteristics of Cr(III)-based Conversion Coating Solution to Apply Aluminum Alloys for Improving Anti-corrosion Properties

  • Shim, Byeong Yun;Kim, Hanul;Han, Chang Nam;Jang, Young Bae;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.79-85
    • /
    • 2016
  • It is imperative to find environment-friendly coatings as an alternative to the currently used hexavalent chromate conversion coatings for the purpose of improving the anti-corrosion properties of aluminum alloys. Hence, in this study, the corrosion properties of a trivalent chromate conversion coating solution are analyzed and measured. Because of the presence of multiple components in trivalent chromate conversion coating solutions, it is difficult to control plating, attributed to their mutual organic relationship. It is of significance to determine the concentrations of the components present in these coatings; hence, qualitative and quantitative analysis is required. The coating solution contained not only an environment-friendly component chromium(III), but also zirconium, fluorine, sulfur, and potassium, in the coating film. These metals are confirmed to produce a film with improved corrosion resistance to form a thin layer. The excellent corrosion resistance for the trivalent chromate solution is attributed to various inorganic and organic additives.

Study of Al2O3/ZrO2 (5 nm/20nm) Nanolaminate Composite

  • Balakrishnan, G.;Wasy, A.;Ho, Ha Sun;Sudhakara, P.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • A nanolaminate consisting of alternate layers of aluminium oxide ($Al_2O_3$) (5 nm) and zirconium oxide ($ZrO_2$) (20 nm) was deposited at an optimized oxygen partial pressure of $3{\times}10^{-2}$ mbar by pulsed laser deposition. The nanolaminate film was analysed using high temperature X-ray diffraction (HTXRD) to study phase transition and thermal expansion behaviour. The surface morphology was investigated using field emission scanning electron microscopy (FE-SEM). High temperature X-ray diffraction indicated the crystallization temperature of tetragonal zirconia in the $Al_2O_3/ZrO_2$ multilayer-film was 873 K. The mean linear thermal expansion coefficient of tetragonal $ZrO_2$ was $4.7{\times}10^{-6}\;K^{-1}$ along a axis, while it was $13.68{\times}10^{-6}\;K{-1}$ along c axis in the temperature range 873-1373 K. The alumina was in amorphous nature. The FESEM studies showed the formation of uniform crystallites of zirconia with dense surface.

Evaluation and Comparison of Nanocomposite Gate Insulator for Flexible Thin Film Transistor

  • Kim, Jin-Su;Jo, Seong-Won;Kim, Do-Il;Hwang, Byeong-Ung;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.278.1-278.1
    • /
    • 2014
  • Organic materials have been explored as the gate dielectric layers in thin film transistors (TFTs) of backplane devices for flexible display because of their inherent mechanical flexibility. However, those materials possess some disadvantages like low dielectric constant and thermal resistance, which might lead to high power consumption and instability. On the other hand, inorganic gate dielectrics show high dielectric constant despite their brittle property. In order to maintain advantages of both materials, it is essential to develop the alternative materials. In this work, we manufactured nanocomposite gate dielectrics composed of organic material and inorganic nanoparticle and integrated them into organic TFTs. For synthesis of nanocomposite gate dielectrics, polyimide (PI) was explored as the organic materials due to its superior thermal stability. Candidate nanoprticles (NPs) of halfnium oxide, titanium oxide and aluminium oxide were considered. In order to realize NP concentration dependent electrical characteristics, furthermore, we have synthesized the different types of nanocomposite gate dielectrics with varying ratio of each inorganic NPs. To analyze gate dielectric properties like the capacitance, metal-Insulator-metal (MIM) structures were prepared together with organic TFTs. The output and transfer characteristics of organic TFTs were monitored by using the semiconductor parameter analyzer (HP4145B), and capacitance and leakage current of MIM structures were measured by the LCR meter (B1500, Agilent). Effects of mechanical cyclic bending of 200,000 times and thermally heating at $400^{\circ}C$ for 1 hour were investigated to analyze mechanical and thermal stability of nanocomposite gate dielectrics. The results will be discussed in detail.

  • PDF

Microstructure and Magnetic Properties of Zn1-xCoxO Thin Films Grown by Sol-Gel Process (Sol-Gel 법으로 제작한 Zn1-xCoxO 박박의 미세조직 및 자기적 특성)

  • Ko, Yoon-Duk;Tai, Weon-Pil;Kim, Eung-Kwon;Kim, Ki-Chul;Choi, Choon-Gi;Kim, Jong-Min;Song, Joon-Tae;Park, Tae-Seok;Suh, Su-Jeung;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.475-482
    • /
    • 2005
  • Zn$_{l-x}$Co$_{x}$O (x = 0.05 - 0.20) films were grown on Coming 7059 glass by sol-gel process. A homogeneous and stable Zn$_{l-x}$Co$_{x}$O sol was prepared by dissolving zinc acetate dihydrate (Zn(CH$_{3}$COO)$_{2}$$\cdot$2H$_{2}$O), cobalt acetate tetrahydrate ((CH$_{3}$)$_{2}$$\cdot$CHOH) and aluminium chloride hexahydrate (AlCl$_{3}$ $\cdot$ 6H$_{2}$O) as solute in solution of isopropanol ((CH$_{3}$)$_{2}$$\cdot$CHOH) and monoethanolamine (MEA:H$_{2}$NCH$_{2}$CH$_{2}$OH). The films grown by spin coating method were postheated in air at 650°C for 1 h and annealed in the condition of vacuum (5 $\times$ 10$^{-6}$ Torr) at 300$^{\circ}C$ for 30 min and investigated the nature of c-axis preferred orientation and physical properties with different Co concentrations. Znl_xCOxO thin films with different Co concentrations were well oriented along the c-axis, but especially a highly c-axis oriented Zn$_{l-x}$Co$_{x}$O thin film was grown at 10 at$\%$ Co concentration. The transmittance spectra showed that Zn$_{l-x}$Co$_{x}$O thin films occur typical d-d transitions and sp-d exchange interaction became activated with increasing Co concentration. The electrical resistivity of the films at 10 at$\%$ Co had the lowest value due to the highest c-axis orientation. X-ray photoelectron spectroscopy and alternating gradient magnetometer analyses indicated that no Co metal cluster was formed, and the ferromagnetic properties appeared, respectively. The characteristics of the electrical resistivity and room temperature ferromagnetism of Zn$_{l-x}$Co$_{x}$O thin films suggested the possibility for the application to dilute magnetic semiconductors.

Electroless Plated Copper Thin Film for Metallization on Printed Circuit Board : Neutral Process (인쇄회로기판상의 금속 배선을 위한 구리 도금막 형성 : 무전해 중성공정)

  • Cho, Yang-Rae;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.661-665
    • /
    • 2013
  • We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of $CuSO_4{\cdot}5H_2O$ as the main metal source, $NaH_2PO_2{\cdot}H_2O$ as the reducing agent, $C_6H_5Na_3O_7{\cdot}2H_2O$ and $NH_4Cl$ as the complex agents, and $NiSO_4{\cdot}6H_2O$ as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using $NH_4OH$. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at $70^{\circ}C$. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.