• Title/Summary/Keyword: Aluminium Thin Film

Search Result 70, Processing Time 0.037 seconds

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.

Analysis on the Optical Properties and Fabrication of Textured AZO Thin Films for Increasing the Efficiency of LED (LED 효율 향상을 위한 Texture구조 AZO 박막의 제조와 광학적 특성분석)

  • Kim Kyeong-Min;Jin Eun-Mi;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.901-906
    • /
    • 2006
  • The transparent conductive oxide(TCO) has been used in necessity as front electrode for increasing efficiency of LED. In our paper, aluminium-doped zinc oxide films(AZO), which has transparent conducting were prepared with RF magnetron sputtering system on glass substrate(corning 1737) and annealed at $400^{\circ}C$ for 2 hr in vacuum ambient and $600^{\circ}C$ for 2hr with $O_2$ ambient respectively. The smooth AZO films were etched in diluted HCL(0.5 %) to examine the surface properties, which in ambient post-annealing process. We confirmed that the electric, structural and optical properties of textured AZO thin films, which implemented using the methods of XRD, FWHM, AFM and Hall measurement. The properties of textured AZO thin films especially depended on the ambient post-annealing process. We presumed that the change of transmittances as R G B LED and the ambient post-annealing process will be increasing the efficiency of LED.

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF

Electrical property improvement of ZnO:Al transparent conducting oxide thin film as surface treatment of polymer substrate (폴리머 기판의 표면개질을 통한 ZnO:Al 투명전도막의 전기적 특성 개선)

  • Paeng, Sung-Hwan;Jung, Ki-Young;Park, Byung-Wook;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1352-1353
    • /
    • 2008
  • In this study, aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET(polyethylen terephthalate) substrate by r.f. magnetron sputtering method. PET substrate was surface-treated in an atmospheric pressure DBD(dielectric barrier discharge) plasma to increase deposition rate and to improve electrical propesties. Morphological changes by DBD plasma were obsered using contact angle measurement. The contact angle of water on PET was reduced from 62$^{\circ}$ to 42$^{\circ}$ by DBD plasma surface treatment. The plasma treatment also increased deposition rate and electrical propesties. The electrical resistivity as low as $4.97{\times}10^{-3}[{\Omega}-cm]$ and the deposition rate of 234[${\AA}$-m/min] were obtained in ZnO:Al film with surface treatment time of 5min, and 20min., respectively.

  • PDF

Effects of Ti or Ti/TiN Underlayers on the Crystallographic Texture and Sheet Resistance of Aluminum Thin Films (Ti 또는 Ti/TiN underlayer가 Al 박막의 배향성 및 면저항에 미치는 영향)

  • Lee, Won-Jun;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The effects of the type and thickness of underlayers on the crystallographic texture and the sheet resistance of aluminum thin films were studied. Sputtered Ti and Ti/TiN were examined as the underlayer of the aluminum films. The texture and the sheet resistance of the metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For the Ti underlayer, the minimum thickness to obtain excellent texture of aluminum <111> was 10nm, and the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. TiN between Ti and Al could suppress the Al-Ti reaction, while it deteriorated the texture of the aluminum film. For the Ti/TiN underlayer, the minimum Ti thickness to obtain excellent texture of aluminum <111> was 20nm, and the minimum thickness of TiN to function as a diffusion barrier between Ti and Al was 20nm.

  • PDF

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.430-437
    • /
    • 2016
  • Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

Optimization of polymer substrate's surface treatment for improvement of transparent conducting oxide thin film (투명전도막의 특성향상을 위한 기판 표면처리법의 최적화)

  • Choi, Woo-Jin;Kim, Ji-Hoon;Jung, Ki-Young;Darma, Jessie;Choo, Young-Bae;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1425_1426
    • /
    • 2009
  • In this study, commercially available polyethylene terephthalate(PET), which is widely used as a substrate of flexible electronic devices, was modified by dielectric barrier discharge(DBD) method in an air condition at atmospheric pressure, and aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET substrate by r. f. magnetron sputtering method. Surface analysis and characterization of the plasma-treated PET substrate was carried out using contact angle measurements, X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscopy (AFM). Especially the effect of surface state of PET substrate on some important properties of ZnO:Al transparent conducting film such as electrical and morphological properties and deposition rate of the film, was studied experimentally. The results showed that the contact angle of water on PET film was reduced significantly from $62^{\circ}$ to $43^{\circ}$ by DBD surface treatment at 20 min. of treatment time. The plasma treatment also improved the deposition rate and electrical properties. The deposition rate was increased almost linearly with surface treatment time. The lowest electrical resistivity as low as $4.97{\times}10^{-3}[\Omega-cm]$ and the highest deposition rate of 234[${\AA}m$/min] were obtained in ZnO:Al film with surface treatment time of 5min. and 20min., respectively.

  • PDF

Interrelation on the Electronic Structure and Spectroscopic-Photoeletric Characteristics in the Cyanine and Merocyanine Dye(II) (Cyanine 및 Merocyanine색소의 분광특성 및 광전특성에 대한 전자구조의 상관관계(II))

  • 손세모
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.2
    • /
    • pp.1-17
    • /
    • 1995
  • Organic thin film electroluminescene devices were fabricated using by molecularly doped method with N,N`-diphenyl-N,N`-bis(3-methylphenyl)-1,1`-biphenyl-4,4`-diamine(TPD) as a hole transport material, tris(8-quinolinolate) aluminium(III)(Alq3) as an emitting and electron transport agent, fluorescent squarylium(SQ) dye as a dopant, and poly(methylmethacrylate) as polymer materials. A cell structure of ITO/TPD-PMMA/Alq3-dopant/Mg was employed. The EL spectrum covers a wide range of the visible region and orange emission os observed. Two peaks at 520 and 660nm correspond to the emissions 620nm Alq3 and SQ dye, respectively.

  • PDF