• Title/Summary/Keyword: Aluminide coating

Search Result 18, Processing Time 0.023 seconds

Microstructure and Hot Corrosion Resistance of Aluminide and Chromium-Aluminide Coatings for Inconel 600 (Inconel 600에 있어서 Al 및 Al-Cr擴酸浸透 被覆處理에 따른 被覆層의 特性과 耐蝕性)

  • Chung In-Sang;Park, Kyeung-Chae;Park, Soo-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.95-105
    • /
    • 1987
  • For the purpose of improving the hot corrosion resistance of Ni-base superalloy, Inconel 600, aluminide and chromium-aluminide coatings by pack cementation process were studied. The morphology of these coatings is dependent on the type of process employed. And their overall composition depends on the composition of the base alloy and on the nature of the cement. Therefore the different aluminide and chromium-aluminide coatings obtained on a superalloy do not possess the same resistance to oxidation and hot corrosion. The mechanisms governing the formation of the coatings and the composition of the coating were varied by pack composition and temperature, and cyclic hot corrosion resistance of the auluminide coating formed by one-step process was inferior to that of the coating formed by two-step process. and Cr-Al composite coating showed good resistance for cyclic hot corrosion.

  • PDF

Effect of Heat Treatment on the Microstructural Evolution of Pt-aluminide Coated Ni-based Superalloy (Pt-Aluminide로 코팅된 초내열합금의 열처리에 따른 미세조직변화)

  • Joo, D.;Park, S.H.;Jung, Y.G.;Lee, K.H.;Kim, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Microstructural evolution of Pt-aluminide coated Ni-based superalloy has been investigated with ductilization heat treatment. The Pt coat was prepared on the superalloy and then aluminide coating was conducted using a pack cementation process. Samples were heat-treated at $1050^{\circ}C$ for 2 hrs and the microstructure and element analysis were preformed. A various precipitated compounds were observed within the coating layer and the diffusion region in the Pt-aluminide coating and heat treatment, indicating that the bi-phase compounds of $PtAl_2$ and NiAl were performed during the Pt-aluminide coating, whereas $M_{23}C_6$, MC, $Ni_3Al$ and ${\sigma}$ phases were precipitated in the inter-diffusion region. The bi-phase compounds of $PtAl_2$ and NiAl were transformed into the single phase compound of $PtAl_2$ with the heat treatment, increasing the amount of carbide and ${\sigma}$ phase.

Microstructures and Cyclic Oxidation Resistance of Aluminide Coatings for Inconel 600 (Inconel 600에 있어서 Al抗散浸透 被覆層의 微細組織과 耐反復酸化性)

  • Chung, In-Sang;Byun, Chang-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.2
    • /
    • pp.60-73
    • /
    • 1987
  • For the purpose of improving the cyclic oxidation resistance of Ni-base superalloy, Inconel 600, aluminide coating methods are studied. The formation rate of aluminide coating layers is measured as a function of time and pack composition to find out the optimum coating condition. The evaluation of cyclic oxidation is established by the change in weight, the microphotography and EPMA of cross sectional area during $200^{\circ}C\;{\leftrightarrow}\;950^{\circ}C\;and\;200^{\circ}C\;{\leftrightarrow}\;1100^{\circ}C$, respectively. The thickness of coating layer and weight gains are parabolic behavior in propotion to time and Al contents. In pack of low aluminum contents, 2 wt%, however, weight gain is decreased when activator, $NH_4Cl$ is higher than 2 wt%. The cyclic oxidation resistance of the coating carried out at 1100$^{\circ}C$ are superior to those of the coating diffusion-treated after pack cementation at 800$^{\circ}C$. Aluminide oxide, which is formed in external scale, is barrier to the cyclic oxidation.

  • PDF

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF

Kinetic Analysis of Diffusion Aluminide Coating (확산 알루미나이드 코팅의 속도론적 해석)

  • 손희식;김문일
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.152-163
    • /
    • 1995
  • A theoretical model which combines gaseous transport and solid state diffusion with the multi-component equilibrium at the gas/pack and gas/coating interfaces was used to study the kinetics of diffusion aluminide coating. The diffusion aluminide coatings were applied by pack cementation with Ni substrate under argon atmosphere in the high activity and the low activity pack containing $NH_4CL$ or $AlF_3$ activator. On the basis of the process conditions, the suggested model allows the surface composition, the growth rate of coating layers and the aluminium concentration profiles in coatings to be calculated. In the case of $NH_4$Cl activator, careful consideration was required in the analysis, because activator contains nitrogen and hydrogen as well as halogen element to activate the pack. A good agreement is obtained between the theoretical predictions and the experimental results.

  • PDF

Computer simulation of aluminide coating by pack cementation (팩 세멘테이션에 의한 알루미나이드 코팅의 컴퓨터 시뮬레이션)

  • Kim, M.I.;Sohn, H.S.;Lee, I.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • A theoretical model which combines gaseous transport and solid state diffusion was used to study aluminide coating process by pack cementation. The aluminide coatings were applied in the high activity pack containing $NH_4Cl$ activator with Ni substrate under argon atmosphere. On the basis of the process conditions, the suggested model allows the surface composition, the growth rate of coating layers and the aluminium concentration profiles in coatings to be calculated. In the case of $NH_4Cl$ activator, careful consideration was required in the analysis, because activator contains nitrogen and hydrogen as well as halogen element to activate the pack. A good agreement is obtained between the theoretical predictions and the experimental results.

  • PDF

Aluminide Coatings on IN713C by Chemical Vapor Depostion (화화증착법에 의한 알루미나이드 코팅층의 형성)

  • Sohn, H.S.;Hong, S.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 1994
  • The purpose of this study is to clarify the influence of the reaction temperature and $AlCl_3$ content on the aluminide coating formation on Ni-based superalloy IN713C in CVD process and to compare its throwing power with that of Pack Cementation process. Aluminide coating was formed by CVD in hot-wall stainless tube reactor from an $AlCl_3-H_2$ mixture in the temperature range $850{\sim}1050^{\circ}C$. At reaction temperature $850^{\circ}C$, the coating thickness and the content of aluminium at the surface were increased as $AlCl_3$ heating temperature was raised. At reaction temperature $1050^{\circ}C$, they were not influenced by the variation of $AlCl_3$ heating temperature. When $AlCl_3$ heating temperature was fixed $125^{\circ}C$, the phases of the coatings were varied from $Ni_2Al_3$ to Al-rich NiAl and to Ni-rich NiAl with the reaction temperature. Therefore, in this study the reaction temperature has been found to be a major factor in determining the phase formed in CVD process. The throwing power of CVD was superior to that of Pack Cementation.

  • PDF

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Oxidation Behaviors and Degradation Properties of Aluminide Coated Stainless Steel at High Temperature (알루미나이드 확산코팅된 스테인레스 합금의 내산화 및 내삭마 특성)

  • Hwang, Cheol Hong;Lee, Hyo Min;Oh, Jeong Seok;Hwang, Dong Hyeon;Hwang, Yu Seok;Lee, Jong Won;Choi, Jeong Mook;Park, Joon Sik
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.396-402
    • /
    • 2021
  • Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000℃ and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500℃ to 700℃ for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200℃, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500℃ for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350℃ for 5-15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.

A Study on the Formation of Aluminide Coating on KM 1557 Alloy by Pack Cementation Process (Pack Cementation법에 의한 KM 1557 합금의 알루미나이드 코팅층 형성에 관한 연구)

  • Yoon, Jin-Kook;Yoo, Myoung Ki;Choi, Ju;Kim, Jae-Soo
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.167-180
    • /
    • 1993
  • The effects of coating variables on the formation of aluminide coating layer with good oxidation resistance on the strongest hot-forged superalloy in the world, KM 1557 developed at KIST by pack cementation process were studied. Pack aluminizing were performed by high-activity process with pure aluminium powders and by low-activity process with codep powders. For high-activity process, Al deposition rate, growth rate of coating layer, and cross-sectional microstructures were influenced by the species and additive amounts of activators and the additive amounts of pure aluminium powders. For low-activity process, Al deposition rate, growth rate of coating layer, and the cross-sectional microstructures were not influenced by the species but additive amounts of activators. Surface structures of coating layer were influenced by the species of activators. Regardless of aluminium activity, Al deposition rate was proportional to the square root of time and parabolic rate constants were different with the species of activators. The activation energy for deposition of aluminium was different with the species of activators for high-activity process. Regardless of the species of activators, the activation energy for deposition of aluminium was 12~14 Kcal/mole for low-activity process.

  • PDF