• Title/Summary/Keyword: Aluminate cement

Search Result 84, Processing Time 0.037 seconds

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

A Study on the Development of Refractories for the Iron , Steel and Cement Manufacturing (제철, 제강 및 시멘트 제조용 내화물의 개발에 관한 연구)

  • 김병호;변재동
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.96-100
    • /
    • 1980
  • The castable refractory, CaO.$2Al_2O_3$ is a useful alumina cement for iron, steel and cement for iron, steel and cement industries, however it is difficult to produce CaO.$2Al_2O_3$because of its high melting point(180$0^{\circ}C$) and narrow firing range. In this study, the coprecipitation method was used to produce CaO.$2Al_2O_3$ for lower temperature firing . This method involved the titration of mixed solution of calicum and aluminate which extracted from domestic kaolin with $NH4_OH$ solution under blowing $CO_2$ gas into the solution. The coprecipitate and its clacined products were analyzed by X-ray diffraction and DTA. The calcined products fired between 400 and 90$0^{\circ}C$ were amorphous, but at 100$0^{\circ}C$ the coprecipitate was converted into one compound, CaO$2Al_2O_3$. From those experimental results, it was found that we could synthesizze CaO.$2Al_2O_3$ at about 100$0^{\circ}C$ which is lower than conventional firing temperature by around 80$0^{\circ}C$. The refractoriness of this alumina cement was SK 34 and the compressive strength ( 1 day) was about 250kg/$\textrm{cm}^2$.

  • PDF

Hydration of Modified Converter Slag (개질한 전노슬래그의 수화반응)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.157-162
    • /
    • 1981
  • A converter slag has been heat-treated above melting point at reduced condition by cokes. As the result, most iron was separated. To make hydraulic compounds, calcium oxide was added to the reduced converter slag and the mixtures were sintered. This modified converter slag clinker mainly contained tricalcium silicate and calcium aluminates, and have a great potential to be a good hydraulic cement. The hydrates of the hydraulic compounds and gypsum with and without granulated slags, were mainly C-S-H, ettringite, calcium monosulfoaluminate hydrate, calcium aluminate hydrate, and $Ca(OH)_2$

  • PDF

A Study on the Flow Loss of Cement-Based Composites Using High Range Water Reducing Admixture (고성능감수제를 사용한 시멘트복합체의 유동성 손실에 대한 연구)

  • 문한영;김기형
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • 고강도 시멘트 복합체의 유동성 손실을 감소시키기 위한 연구의 일환으로 시멘트계 입자에 대한 고성능감수제의 흡착특성, 현탄액 속에서의 응집특성을 관찰하여 시멘트풀과 모르터의 유동성과 관련시켜 고찰하였다. 본 연구결과 알루미네이트계 화합물이 많이 함유된 보통포틀랜드 시멘트의 흡착률이 가장 크며, 시멘트풀 및 모르처의 유동성 손실이 작았으며 나프탈린계 고성능 감수제가 유동성 손실면에서 얼마간 유리하였다.

Effect of Carbon Dioxide-reduced Cement on Properties of Lightweight-foamed Concrete (이산화탄소 저감형 시멘트 함량에 따른 경량기포 콘크리트의 물성평가)

  • Im, Donghyeok;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2020
  • To improve the initial strength and stability of lightweight-foamed concrete, which shows suitable sound absorption and insulation characteristics, the effect of CO2-reduced cement on the properties of the concrete was investigated. Various mixing ratios were applied by substituting a certain amount of slag and Calcium Sulfo Aluminate (CSA) in CO2-reduced Ordinary Portland Cement (OPC) and the physical properties of the samples were examined using the Korean Standard. The kiln temperatures of the CSA were 100-200℃ ; these values are lower than those of OPC and can lead to energy saving. In addition, the low limestone content reduces greenhouse gas emissions by 20 %. Adding a small amount of CSA in OPC content activates Ca-Al-H2-based hydrates, and the initial compressive strength of the concrete is improved. As the CSA content increased, the thermal conductivity of the concrete decreased by up to 8% compared to plain concrete, thus indicating an improvement in its insulation. Therefore, the settlement stability was improved as the addition of CSA shortened the setting time.

Hydration Behaviors of Portland Cement with Different Lithologic Stone Powders

  • Xiong, Zuqiang;Wang, Peng;Wang, Yuli
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • In this study, influence of different stone powders (SP), including limestone powders (LP), quartzite powders (QP), and granitic powders (GP), on the hydration behaviors of portland cement, for example, setting time, hydration heat, and hydration products, were discussed. The initial and the final setting time both shorten when the content of LP is 5 %, however, they are slightly delayed by the other two SPs. The LP has no obvious influence on the arrival time of the first peak in the exothermal curves, and it makes the peak value decrease; the other two SPs postpone the appearance of the first peak, and they also make the peak value decrease. For the second peak, LP shifts the peak position to the left, QP has no effect on this peak position, and GP makes the appearance of this peak delayed by 143 min. Similarly, three kinds of SPs have different influence on the hydration products of portland cement. The LP precipitates the formation of hydrated calcium carbo aluminate, the QP the formation of hydrated garnet, and the GP makes the amount of Tobermorite increase.

On the Rapid Hardening Cement (II) (초속경시멘트 제조에 관한 연구(제2보 수화반응))

  • 한기성;최상흘;한상목;서일영
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.4
    • /
    • pp.3-8
    • /
    • 1975
  • Hydration processes of the rapid hardening cement clinkers, which were synthesized from domestic alunite for major alumina source, limestone, kaolin and fluorite, were investigated by means of x-ray diffraction analysis, thermal analysis and microscopic observation etc. The clinkers were composed mainly of alite, calcium fluroaluminate (C11A7.CaF2) minerals. While the hydratio processes of the clinkers are altered by concentration of SO3 in the paste, calcium aluminate hydrates such as C4AH13, CAH10 and calcium monosulfate hydrate (C3A.CaSO4.12H2O) are formed at first and then some of them are transformed into ettringite(C3A.3CaSO4.32H2O) within 30~60 min. when the concentration of SO3 in the paste are enough. However the formed ettringite are changed slowly into calcium monosulfate hydrate as the concentration of SO3 become lowered, and the paste is hardened with these close-packed minerals. When the content of SO3 in clinker is so enough, calcium sulfoaluminate hydrates are found without any addition of anhydrite or hemi-hydrite.

  • PDF

Alkali-Silica Reaction of Accelerating Agents in Shotcrete (숏크리트용 급결제의 알칼리-실리카 반응성 검토)

  • Choi, Bo-Ra;Hong, Byung-Tak;Lee, Jae-Wan;Lee, Su-Jin;Park, Hae-Kyun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.323-324
    • /
    • 2010
  • The purpose of this study was to investigate alkali-silica reaction of accelerating agents in shotcrete. The test was performed with accelerating agents (aluminate, alkali-free, cement based mineral admixture) in the Type I cement. As a test result, using the nonreactive aggregates, detrimental expansion due to alkali-silica reaction doesn't occurred regardless of equivalent alkali contents of accelerating agent.

  • PDF

A Study on the Early-Age Strength of Mortar Using Calcium Sulfo Aluminate (칼슐설포알루미네이트를 사용한 모르타르의 초기강도 특성에 관한 연구)

  • Song, Tae-Hyeob;Lee, Sea-Hyun;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.397-400
    • /
    • 2005
  • This study is a result that, in order to improve the early stage strength of fly ash, the calciumsulfoaluminate in which the generation of ettringite was very active in the early stage was substituted by some amount, and then the effect on the early stage was analyzed. when fly ash was substituted by 30$\%$, the strength dropped by maximum 54 $\%$ in the 3rd day of aging, compared to the cement mixture, but when CSA was substituted by 8 $\%$ in the fly ash amount, the strength improved at the 86 percent level of cement, it is suggested as an economical and effective method to improve the early-stage strength that CSA should be mixed by 8$\%$ compared to the fly ash amount used

  • PDF

Monitoring of calcium aluminate grout exposed to sea water environment (해수에 노출된 칼슘 알루미나계 그라우트의 기계적 특성 모니터링)

  • Son, Dasom;Jiyoon, Park;Chongku Yi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.183-184
    • /
    • 2023
  • Considering the actual marine environment construction, this paper monitors the mechanical properties (Flexural, Compressive strength) by exposing alumina cement to seawater. As a result of the experiment, it was confirmed that the strength decreases by about -25% when curing in seawater, but the target strength of the product is met, so it is believed that exposure to the actual marine environment will not be significantly affected.

  • PDF