• Title/Summary/Keyword: Alumina solubility

Search Result 13, Processing Time 0.017 seconds

Alum and Hydroxide Routes to ${\alpha}-Al_2O_3$ (I) Calculation of Solubility Diagram for Extracting the Pure Alumina from Alumino-Silicate and its Experimetal Confirmation (명반 및 수산화 알루미늄을 이용한 ${\alpha}$-Al$_2$O$_3$의 합성 (I) 규산 알루미늄광으로부터 순수한 ${\alpha}$-Al$_2$O$_3$ 추출을 위한 용해도 모델 계산 및 실험적 검증)

  • Yoo Jong-Seok;Choy Jin-Ho;Han Kyoo-Seung;Han Yang-Su;Lee Chang-Kyo;Lee Nang-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.414-421
    • /
    • 1991
  • High-purity alumina powder was prepared by extracting the natural alumino-silicate mineral (halloysite) in H$_2$SO$_4$ solution. For the selective precipitation of alum and aluminum hydroxide, the solubility diagram was prior calculated by also considering the formation of hydroxides and carbonates for all the metal ions in an aqueous solution, which allow us to control the contamination of impurities envolved in the natural minerals. Ammonium aluminum sulfate (alum) and alumium hydroxide could be successfully prepared at pH = 1.5∼2.5 and pH = 6∼8, respectively according to our solubility diagrams. The purity of alum-and hydroxide-derived ${\alpha}-Al_2O_3$ was determined to be 99.7${\%}$ and 99.0${\%}$, respectively, which indicates the former route would be more desirable for the large scale application. It is also worthy to note that the impurities like Na and Si were strongly reduced in the former (Na = 0.05${\%}$, Si = 0.09${\%}$) compared to the latter (Na = 0.29${\%}$, Si = 0.12${\%}$).

  • PDF

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing (상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가)

  • Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2023
  • Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF