• Title/Summary/Keyword: Alumina membrane

Search Result 163, Processing Time 0.025 seconds

Fabrication of Nano-mask Using Porous Alumina Membrane (다공성 알루미나 박막을 이용한 나노마스크 제작)

  • Jung, Kyung-Han;Ryu, Kil-Yong;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.364-365
    • /
    • 2006
  • One of the promising routes for producing highly ordered nanostructures is a template method using the porous alumina membrane (PAM). Because the PAM is mechanically, chemically, thermally stabile with highly ordered structure, many researchers have studied under various experimental conditions to fabricate nanostructures. We present the information on the fabrication of about 300 nm nano-mask which have important applications for various patterned nanostructures.

  • PDF

A Study on Preparation of Alumina Membranes(2) (알루미나 한외여과막의 제조에 관한 연구(2))

  • 유재근;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.359-366
    • /
    • 1994
  • Tow types of supports were made using $\alpha$-Al2O3 powder and optimum conditions to prepare for supports were provided. Sol solution for coating was synthesized by sol-gel method with aluminum isopropoxide. Supports were coated and heat-treatemented, where the thickness of coating layer was controlled by dipping time. Flux and permeability of alumina membrane were measured by liquid and gas filtration apparatus and these were compared with the provided model. It was confirmed that the coating was done very well without micro~crack and defect.

  • PDF

Stability of a Silica Membrane in the HI-$H_2O$ Gaseous Mixture (HI-$H_2O$ 기상 혼합물에서 Silica 막의 안정성)

  • HWANG Gab-Jin;PARK Chu-Sik;LEE Sang-Ho;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The stability of the prepared silica membrane by chemical vapor deposition (CVD) method in the HI-$H_2O$ gaseous mixture was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical IS process. Porous $\alpha$-alumina having pore size of 100 nm was modified by the different CVD temperature using tetraethoxysilane as the Si source. The CVD temperature was $700^{\circ}C$, $650^{\circ}C$, and $600^{\circ}C$. The $H_2$/H$_2$ selectivities of the modified membranes which were measured by single-component permeation experiment showed 43.2, 12.6, and 8.7 at $600^{\circ}C$ for the M1 (CVD temperature was $700^{\circ}C$), M2 (CVD temperature was $650^{\circ}C$) and M3 membranes (CVD temperature was $600^{\circ}C$), respectively. Stability experiment in the HI-$H_2O$ gaseous mixture was carried out at $450^{\circ}C$. The prepared silica membrane at $600^{\circ}C$ of CVD temperature was more stable than that at the other CVD temperature.

Fabrication of Alumina Membrane Using Anodic Oxidation Process (양극산화를 이용한 알루미나 나노세공 멤브레인의 제조)

  • Im, W.S.;Cho, K.C.;Cho, Y.S.;Choi, G.S.;Kim, D.J.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.593-597
    • /
    • 2003
  • Anodic aluminum oxide (AAO) membrane was made of aluminum sheet (99.6%, 0.2 mm thickness). The regular array of hexagonal nano pores or channels were prepared by two step anodization process. A detail description of the AAO fabrication is presented. After the 1st anodization in oxalic acid (0.3 M) at 45 V, The formed AAO was removed by etching in a solution of 6 wt% $H_3$$PO_4$+1.8 wt% $H_2$$CrO_4$. The regular arrangement of the pores was obtained by the 2nd anodization, which was carried out in the same condition as the 1st anodization. Subsequently, the alumina barrier layer at the bottom of the channel layer was removed in phosphoric acid (1M) after removing of aluminum. Pore diameter, density, and thickness could be controlled by the anodization process parameters such as applied voltage, anodizing time, pore widening time, etc. The pore diameter is proportional to the applied voltage and pore widening time. The pore density and thickness can be controlled by anodization temperature and voltage.

Development of Ceramic Composite Membranes for Gas Separation: IV. Permeation Characteristics of ${\gamma}$-Alumina Membranes (기체분리용 세라믹 복합분리막의 개발 : IV. ${\gamma}$-알루미나 분리막의 투과 특성)

  • 현상훈;강범석;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.970-980
    • /
    • 1992
  • ${\gamma}-alumina$ membranes were prepared by sol-gel dip coating or pressurized coating of boehmite sols on slipcasted ${\gamma}-alumina$ support tubes. The particle size of sols synthesized via the modified Yoldas-method could be controlled below 5 mn according to the mole ratio of nitric acid/aluminumtri-sec-butoxide (0.07~1.0). The reproducible crack-free composite membranes were produced by the 2nd dip coating or the pressurized coating technique using very stable sols with the particle size of 45 nm. Nitrogen gas permeability through the top-layer in the composite membrane was about $70~55{\times}10^{-7}\;mol/m^2{\cdot}s{\cdot}Pa$. The thermal stability of the top layer was proved to be good enough upto the heat-treatment temperature of $500^{\circ}C$.

  • PDF

Separation of Menthol/Water Mixture with Surface-Modified Hydrophobic Membrane (표면개질한 소수성 막을 이용한 menthol/water 혼합물의 분리)

  • Han, Sang-Oh;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.249-254
    • /
    • 2002
  • The surface of tube-type alumina substrate was modified with a silane coupling agent in order to modify the membrane surface with hydrophobicity. Contact angle of water drops on modified membrane was greater than $90^{\circ}$. The modified membrane was tested in pervaporation and vapor permeation for the recovery of menthol from dilute menthol/water mixture. With increasing menthol concentration in the feed at $45^{\circ}C$, permeation rate of menthol in pervaporation and vapor permeation increased from $0.039(g/m^2hr)$ to $0144(g/m^2hr)$ and from. $0.077(g/m^2hr)$ to $0.297(g/m^2hr)$ respectively. When feed concentration is 0.005(g/L) at $45^{\circ}C$, separation factor for menthol in pervaporation and vapor permeation is 20,7 and 40.5 respectively.

  • PDF