• Title/Summary/Keyword: Alum 슬러지

Search Result 34, Processing Time 0.028 seconds

The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment (응집제를 활용한 간헐포기 MBR공정에서 순간플럭스 증가가 분리막에 미치는 영향 평가)

  • Choi Song-Hyu;Cho Nam-un;Han Myong Su
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2005
  • By supplying air intermittently in various mode, the effects of oxic/anoxic time ratio and air scrubbing in aeration condition on the membrane flux and permeability were investigated. When suction pump stops, vacuum pressure remains inside the suction pump. Therefore, the effect of remaining vacuum pressure in the suction pump on fouling of membrane was investigated. The effect of EPS (Extra cellular Polymeric Substance) which is generated due to the long SRT and high concentration of MLSS and the dose of coagulant on the membrane were also investigated. The suitable oxic/anoxic time ratio for the best removal efficiency of organic matter and nitrogenous matter was 40 minutes (Oxic) : 20 minutes (Anoxic). At this time ratio, alum was dosed into the aeration tank. The result of dosing alum was that the concentration of alum solution might affect nitrification and denitrification. To remove 1 mg/L of phosphorus in MBR process, it needs 0.75 mg/L of alum solution.

T-P Removal Efficiency According to Coagulant Dosage and Operating Cost Analysis (응집제 투입에 따른 인 제거 효율 및 운영비용 분석)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.549-556
    • /
    • 2012
  • T-P removal efficiency was analyzed according to the metal to initial T-P ratio (mole basis) with respect to the samples from different WWTPs having various initial T-P and SS conditions. Also, operating costs were calculated based on the injected coagulant amount and the amount of sludge production. Most experiments were conducted by the standard jar-test protocol. Molar ratio of coagulant dose was varied considerably according to the initial SS concentration range in secondary clarifier effluent samples which had above 0.5 mg/L of initial T-P. Based on 90% T-P removal efficiency, results were: At the initial SS range of below 10 mg/L, Alum (8%) = 11 mol Al/mol P needed and PAC (17%) = 9.6 mol Al/mol P needed; At the initial SS range of above 10 mg/L, Alum (8%) = 3.9 mol Al/mol P needed and PAC (17%) = 3.2 mol Al/mol P needed.

Effect of Water Treatment Sludge(WTS) on Trace Metals Content in Sorghum(Sorghum bicolor(L.) Moench). II. Measuring of Nickel Content of the Forage (수수(Sorghum bicolor(L.) Moench)의 미량 광물질 함량에 관한 정수 슬러지 처리 효과 II. 니켈 함량 분석)

  • Park, Byung-Hoon;Choi, In-Sub;Kim, Eun-Young;Lee, Eun-Mi;Lee, Hyo-Jeong;Lee, Su-Chan;Park, Jae-Won;Yoo, Sung-Mook;Kim, Sang-Deog A.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.1
    • /
    • pp.19-28
    • /
    • 2008
  • Effect of Water Treatment Sludge(WTS) on trace metals content in Sorghum(Sorghum bicolor(L.) Moench) was investigated. At this report measuring of nickel(Ni) content of the forage was presented. Four treatments, Control, Compost, Alum+(nitrogen, phosphorus, potassium)(NPK), Compost+NPK, were applied to the sorghum in a mountainous place near the Joongbu University. With the 1, 3, 5 hours conditions, the background value was the least on the 5 hours warming up of the AA-680 spectrophotometer, and on the condition(mean/SD) of absorbances of Ni observed was the most. It is necessary in Ni analysis warming up for longer period around 5 hours for this type of apparatus. And we think that the difference of warming time for Ni analysis in order to carry out better measuring; the reason might be the larger bonding energy of Ni than those of Cu, calcium(Ca), magnesium(Mg) and (potassium)(K).

The Effect of Coagulant on Filtration Performance in Submerged MBR System (침지형 MBR 공정에서 응집제가 여과성능에 미치는 영향)

  • Kim Kwan-Yeop;Kim Ji-Hoon;Kim Young-Hoon;Kim Hyung-Soo
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.182-187
    • /
    • 2006
  • The purpose of this study was to investigate effect of coagulation on filtration performance of membrane in submerged MBR system and influence of continuous aeration to reduce fouling of membrane surface on coagulated floc. For this purpose, aeration tank sludge of MBR system was compared with jar-test sludge. The experimental results were analysed in terms of floc size and SRF (Specific resistance of Filtration). The more alum was added, the more content of floc below $10{\mu}m$ reduced and SRF decreased. But compared with jar-test results, it was found that effect of coagulation on MBR floc was reduced. Operation time of membrane in alum added MBR was longer than that in control MBR. But operation time was not proportional to alum dose. It was thought that the result was reason that floc below $10{\mu}m$ was not reduced sufficiently by shear force of continuous aeration. Moreover it was founded that if alum is added more than proper dose, it brings filtration resistance to increase.

Application of Ti-salt Coagulant and Sludge Recycling for Phosphorus Removal in Biologically Treated Sewage Effluent (하수종말처리장의 인 처리시설에 티탄염 응집제 적용 및 슬러지 재활용)

  • Kim, Jong Beom;Park, Hee-Ju;Lee, Ki Won;Jo, A Ra;Kim, Myung Wan;Lee, Young Jun;Park, Se Min;Lee, Kwang Young;Shon, Ho Kyong;Kim, Jong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.257-262
    • /
    • 2013
  • As the regulation of total phosphorus (T-P) concentration in biologically treated sewage effluent is reduced to 0.2~2 mg/L, flocculation process is recommended to remove T-P. In this study, the performance of Ti-salt coagulant was investigated in terms of dosage and pH in removing phosphorus and the collected sludge after Ti-salt flocculation was calcined to produce titania for effective sludge recycling. The flocculation performance was carried out using two methods: sedimentation and air floatation. Both methods were feasible to apply for Ti-salt flocculation. Ti-salt flocculation was effective in reducing phosphorus concentration in sewage effluent, which showed similar performance of alum ($Al_2(SO_4)_3$). The calcined sludge was recycled to titania which is the widely used metal oxide. Titania produed from Ti-salt sludge indicated similar characteristics of commercially-available P-25 in regard to photocatalytic activity and surface area. Therefore, this can be easily adopted to titania application by replacing P-25.

Effective Chemical Treatment of Biologically Treated Distillery Wastewater in Industrial Scale (생물학적으로 처리한 주정폐액의 효율적인 화학적 처리방법)

  • Nam, Ki-Du;Chung, In;Hur, Daniel;Park, Wan
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.692-697
    • /
    • 1999
  • For further removal of non-biodegradable CODs and color in biologically treated distillery waster water, we selected a chemical treatment with Fe(III) and cationic polymers and then another chemical treatment with Fenton reagent. We developed Pregenerated Bubble Flotation(PBF) to effectively remove the chemical sludge from each chemical reaction process. The flotation unit was constructed with hydraulic loading rate, 7 ㎥/$m^2$.hr. The CODMn and suspended solids (SS) in biologically treated distillery waste water were reduced by the first PBF from 310-1096 mg/L to 141-303 mg/L and from 160-990 mg/L to 48-385 mg/L, respectively. Again, after the Fenton reaction process, floated SS was skimmed off at the top of the flotation unit and the final effluent was directly discharged without any tap water dilution. The quality of final effluent can be below 40 mg/L-CODMn but IISan Distilery has been maintained effluent quality of 73 mg/L-CODMn and 10-80 mg/L-SS. The chemical cost was saved by more than 30% as compared with that of prior process.

  • PDF

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Enhancement of Dewatering and Settling Characteristics for Swine Wastewater Using Coagulants (응집제를 이용한 양돈폐수의 침감성 및 슬러지의 탈수성 증대)

  • Kang, Seon-Hong;Min, Koung-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.313-319
    • /
    • 2002
  • Laboratory experiments using metal coagulants[alum, PAC(Poly Aluminum Chloride)] and polymer were conducted in this study to enhance dewatering and settling characteristics for swine wastewater. In this study, application of mixture of metal coagulants and polymer improved settling and dewatering characteristics for swine wastewater compared to using only metal coagulants. Also sludge volume was decreased when the mixture was applied. About 80-90% of settling velocity was increased and thickening ratio was increased as much as two times when adding 100mg/L of cationic polymers. Polymer was excellent for enhancing dewatering property among coagulants.

The Study on Manufacture of PACl(Polyaluminum Chloride) from Water Treatment Plant Sludges (정수장 슬러지(Alum Sludge)로부터 PACl(Polyaluminum Chloride) 응집제 제조에 관한 연구)

  • Kim, In-Bae;Lee, Sang-Bong;Kim, Dong-Youn;Kim, Boo-Gil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.441-451
    • /
    • 2000
  • Sludge produced from water treatment plants contains plenty of aluminum due to addition of coagulants, polyaluminum chloride(PACI) which has been widely used in most of water treatment plants. however. the whole of PACI is imported from other countries. In this research. the effective methods for recycling PACI from sludge of water treatment plants were developed and evaluated. Aluminum chloride hexahydrate($AlCl_3{\cdot}6H_2O$) was obtained by sparging HCl gas aluminum extracted from sludge using hydrochloric acid (HCI). This aluminum chloride hexahydrate was solidified by decomposition at $180^{\circ}C$. and dissolved in water to produce PACI. The optimum extraction rate was obtained at the condition of 10 minutes of reaction time. $105^{\circ}C$ of reaction temperature. 27.65%(W/W) of HCI concentration. The KS experiment proved that manufactured aluminum chloride hexahydrate was 98.7% degree and the recycled PACI coagulants agreed with the KS standard. The optimum temperature of decomposition was $180^{\circ}C$ and the basicity of the PACI was decided upon the extent of decomposition The compared experiments between purchased coagulant and manufactured coagulant presented that both coagulants had same performance for turbidity, DOC, $UV_{254}$ absorbance. and chlorophyll-a.

  • PDF