• Title/Summary/Keyword: AluYRa2

Search Result 2, Processing Time 0.017 seconds

Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution

  • Park, Sang-Je;Kim, Young-Hyun;Lee, Sang-Rae;Choe, Se-Hee;Kim, Myung-Jin;Kim, Sun-Uk;Kim, Ji-Su;Sim, Bo-Woong;Song, Bong-Seok;Jeong, Kang-Jin;Jin, Yeung-Bae;Lee, Youngjeon;Park, Young-Ho;Park, Young Il;Huh, Jae-Won;Chang, Kyu-Tae
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.950-958
    • /
    • 2015
  • BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crabeating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3' splice site. Intriguingly, in rhesus and crabeating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5' splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates.

Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

  • Lee, Ja-Rang;Park, Sang-Je;Kim, Young-Hyun;Choe, Se-Hee;Cho, Hyeon-Mu;Lee, Sang-Rae;Kim, Sun-Uk;Kim, Ji-Su;Sim, Bo-Woong;Song, Bong-Seok;Jeong, Kang-Jin;Lee, Youngjeon;Jin, Yeung Bae;Kang, Philyong;Huh, Jae-Won;Chan, Kyu-Tae
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crabeating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.