• 제목/요약/키워드: Alternative fuel oil

검색결과 193건 처리시간 0.027초

대체연료로서 바이오디젤의 윤활성 (The Lubricity of Biodiesel as Alternative Fuel)

  • 임영관;이천호
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.78-87
    • /
    • 2010
  • Biodiesel have been studied as alternative fuel due to solution of air pollution and fossil fuel exhaustion. Biodiesel from animal fat and vegetable oil was known as eco-friendly fuel like low toxicity, biodegradable compare to petrodiesel. In particular, biodiesel have excellent lubricity due to involved ester functional group. This paper shows the biodiesel's lubricity based on worldwide biodiesel research.

Ti-grafted SBA-15 촉매를 이용한 경유유분 중의 황화합물의 선택산화탈황 특성 (Characteristics of Oxidative Desulfurization(ODS) of Sulfur Compounds in Diesel Fuel over Ti-grafted SBA-15 Catalyst)

  • 조진수;정광은;채호정;김철웅;정순용;오성근
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.845-851
    • /
    • 2008
  • 티타늄이 그라프팅(grafting)된 SBA-15 촉매(Ti-grafted SBA-15)상에서 TBHP(tert-butylhydroperoxide)를 산화제로 사용하여 회분식 반응기에서 모델 황화합물 및 실제 디젤 유분(LCO; Light Cylcle Oil)의 선택산화탈황(ODS; Oxidative Desulfurization) 반응을 수행하였으며, 티타늄 함량, 산화제/황의 몰비, 반응온도의 효과 및 반응속도상수와 활성화 에너지를 조사하였다. 티타늄이 5 wt% 도입된 Ti-grafted SBA-15 촉매는 난분해성 황화합물인 디벤조티오펜(DBT; Dibenzothiophene)과 4, 6-디메틸디벤조티오펜(4, 6-Dimethyldibenzothiophene)의 설폰(sulfone) 화합물로의 산화반응 시 표준반응조건(TBHP/S=2.5, $80^{\circ}C$, 1 atm)에서 반응개시 후 20분 뒤 100% 전환되는 우수한 활성을 나타내었다. 실제 디젤유분인 LCO를 원료로 성능 시험을 한 결과 활성이 우수하게 나타났으며 Ti-grafted SBA-15 촉매는 LCO에 함유 되어 있는 난분해성 황화합물의 선택적 산화탈황촉매로써 응용 가능성을 보였다.

디젤기관의 대체연료 이용에 관한 연구 (I) (기본성능) (A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(I) (Basic Performance))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제10권5호
    • /
    • pp.61-68
    • /
    • 1988
  • This paper reports the basic performance of a naturally aspirated DI diesel engine which is used widely in industry and agriculture when vegetable oils are used as fuel substitutes. In this paper, the properties of vegetable oils as diesel fuel were investigated and the load-performance of diesel engine when vegetable oils were used, as tested compared against diesel fuel. The general objective of this investigation is to realize an efficient, clean, and low carbon deposit combustion of the vegetable oils in diesel engines, showing their feasibility as diesel fuel substitutes. The results of this experiment were as follows; (1) Compared with diesel fuel, the droplet size of vegetable oil is very large. (2) Compared with diesel fuel, rapeseed oil, palm oil, and their blend fuels offered lower smoke, lower NOx, ower engine noise, and high thermal efficiency in a D.I. diesel engine However, there were carbon deposit and piston ring sticking problems with long-term operation. (3) For ethanol-rapeseed oil blends, a 10-20% of ethanol content is recommended to enable lower BSHC and less smoke without a remarkable increase in engine noise compared with pure rapeseed oil. (4) A 10% oxygen content in the vegetable oils is contributed to reduced smoke emission.

  • PDF

바이오디젤유를 사용하는 디젤기관에서 연료분사시기 변화에 따른 기관성능 및 배기배출물 특성 (Effect of Fuel Injection Timing on the Performance and Exhaust Emissions in IDI Diesel Engine Using Biodiesel Fuel)

  • 유경현;오영택
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.76-82
    • /
    • 2004
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. However, BDF can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the effects of injection timing on the characteristics of performance and emissions with BDF in IDI diesel engine, BDF derived from rice bran oil was considered in this study. The engine was operated at six different injection timings and six loads at a single engine speed of 2000rpm. When the injection timing was retarded, better results were obtained, which may confirm the advantage of BDF. The reduction of NOx and smoke was observed for a 2$^{\circ}$ retarded injection timing without any sacrifice of BSEC.

경유 대체연료로서 수첨바이오디젤의 윤활 특성 연구 (Lubricity Characterization of Hydrogenated Biodiesel as an Alternative Diesel Fuel)

  • 김재곤;전철환;임의순;정충섭
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.321-327
    • /
    • 2012
  • Paraffin bio-based hydrotreated biodiesel(HBD) is originated from vegetable oil(the process can also be applied to animal fat) with the the chemical structure $C_nH_{2n+2}$. In the number of process of the oil or fat, the hydrogenation is significantly important to create a bio-based diesel fuel. This study is focused on lubricity characteristics of BTL diesel blends to use alternative diesel fuel in Korea. The BTL diesel are blended the different volume ratios (HBD 5(5 vol.% HBD - 95 vol.% diesel), HBD 10, HBD 20, HBD 30, HBD 40 and HBD 50. HBD with paraffin compounds showed a very high centane number, low sulfur content and free aromatic compound. Especially, the wear scar of HBD showed poor lubricity compared to automotive diesel due to the fuel composition, low sulfur content and free aromatic compound. Also, the lubricity specification of automotive diesel with different six HBD blends is within the limit by the Korean standards. Finally, HBD as an alternative diesel fuel is challengeable in transportation sector of Korea.

디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로) (Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil))

  • 임재근;최순열;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

디젤기관의 대체연료 이용에 관한 연구(III) (에스테르 연료, 연소특성해석) (A Study on Alternative Fuel as Fuel Substitutes in DI Diesel Engine III (Esterified fuel, Analysis of rate of combustion using by Wiebe's functions))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제11권1호
    • /
    • pp.31-43
    • /
    • 1989
  • 제2보 (2)에서는 식물유를 연료로 사용할 경우 문제점인 시동성, 내구성 및 카본생성을 억제하기 위하여 물리적인 방법으로 해결책을 모색하였다. 그러나, 본 연구는 기관자체는 전혀 변형시키지 않고, 점도저감을 위하여 화학적인 방법 즉, 식물유를 알콜과 반응시켜 에스테르변 환을 하여 해결하려는 방법으로, 에스테르화한 연료를 사용하였을 때의 기관성능 및 카본 퇴적 문제를 비교, 시험한 것이다. 또, 기름이 식물유와 같이 지방산으로 이루어져 있다면, 어느 기름도 에스테르 변환이 가능하기 때문에, 생선기름인 정어리기름의 에스테르연료도 사용하여 그 이용 가능성을 확실히 하였다. 또한, 각종 연료의 연소성에 관하여 보다 상세한 검토를 하기 위하여, 이들의 연소율 파형을 2개의 Wiebe의 연소함수의 조합으로 표현함과 동시에 연소율 파형을 구성하는 각 변수를 해석함으로써, 기관성능치와 연소성과의 정량적인 관계에 대해서도 조사한 것이다.

  • PDF

Oilsands Bitumen의 용매 불용분 및 용해분의 물리.화학적 특성 연구 (Physical and Chemical Characteristics of Solvent-Insolubles and Solvent-Solubles in Oilsands Bitumen)

  • 김경훈;전상구;노남선;김광호;신대현;이기봉;박효남;한명완
    • 에너지공학
    • /
    • 제17권1호
    • /
    • pp.38-45
    • /
    • 2008
  • 본 연구는 캐나다산 아사바스카 오일샌드 역청(Athabasca Oilsands Bitumen)의 용매 불용분 실험(Solvent-Insolubles Experiment)을 통하여 아스팔텐(Asphaltenes : Solvent-Insolubles) 및 말텐(Maltenes : Solvent-Solubles)에 대한 다양한 물리 화학적 특성변화를 살펴보기 위하여 수행되었다. 용매는 n-Heptane, n-Hexane, n-Pentene의 3가지 용매를 사용하였고, 아스팔텐의 분리는 ASTM D 3279 방법을 응용하여 실시하였다. 역청, 아스팔텐, 말렌에 대한 분석항목은 원소분석, 분자량 분포, 비점 분포, 중금속 함량, API 비중, 점도, SARA 분포 등이다. 분석 결과 모든 말텐의 황 함량, 중금속 함량 및 분자량은 역청에 비하여 낮은 경향을 보였다. 그리고 n-Pentane 용매를 사용한 경우가 다른 용매에 비하여 말텐의 점도가 감소하였고, 황, 중금속 함량 및 분자량도 상대적으로 낮게 측정되었다. 따라서, 본 실험결과는 합성원유(SCO) 생산을 위한 역청의 경질화 공정에 필요한 기초자료로 활용할 수 있다고 판단된다.

디젤기관에서 바이오디젤 혼합유의 연소특성에 미치는 연료분사시기의 영향 (Effects of Fuel Injection Timing on Combustion Characteristics of Biodiesel Blend Oil in Diesel Engine)

  • 임재근;조상곤
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.10-15
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on the ground and the sea. However, the combustion characteristics are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore combustion characteristics on fuel injection timing are experimentally investigated to find out the optimum fuel injection timing in the case of the aged diesel engine using biodiesel blend oil. Cylinder pressure, rate of pressure rise, rate of heat release and combustion gas temperature are risen by the advancing fuel injection timing, while the exhaust gas temperature and soot emission level are decreased by the advancing of fuel injection timing. The least specific fuel oil consumption is indicated at BTDC $26^{\circ}$ CA on the 75%load and at 1800rpm.