• Title/Summary/Keyword: Alternative explosion energy source

Search Result 4, Processing Time 0.023 seconds

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

Analysis of Chemical and Physical Characteristics of Log Woods for Oak Mushroom Production Depending on Cultivation Periods and Steam Explosion Treatment (표고버섯 골목의 사용연수에 따른 화학적, 물리적 성상 및 폭쇄처리 후 변화 관찰)

  • Koo, Bon-Wook;Park, Jun-Yeong;Lee, Soo-Min;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.77-86
    • /
    • 2005
  • In order to investigate the ability of log wood for oak mushroom production as a source of an alternative energy, both chemical and physical characteristics of log wood were investigated according to the cultivation periods. Also, both chemical and physical characteristics of material that treated by steam explosion were investigated to confirm the pretreatment effect by remaining enzyme as a control. The contents of ash, water-, alkali- and organic soluble extracts have been increased after the inoculation. It appeard that holocellulose contents substantially decreased and the contents of lignin as another main component of wood remained constant after the inoculation. However this result implied that indeed, a sufficient amount of lignin has been degraded paritially by enzymes of oak mushroom Lentinus edodes if we consider that the amount of holocelulose was substantially reduced. It also indicated that the degree of degradation gradually progressed but crystallinity decreased after the inoculation. The contents of water-, alkali- and organic soluble extracts have been increased by steam explosion. Holocellulose contents increased within narrow limits and lignin contents remained constant. However the contents of holocellulose and lignin have been decreased by steam explosion, considering that the amount of other extractives was relatively increased. The degree of crystallinity and lignin contents reduction by steam explosion was almost similar to the result obtained by increasing cultivation periods. According to the results, log woods for mushroom production have a potential as material for developing alternative energy.

Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique (FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증)

  • Lee, Sang-Gab;Lee, Jae-Seok;Park, Ji-Hoon;Jung, Tae-Young;Lee, Hwan-Soo;Park, Kyung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF