• 제목/요약/키워드: Alternative Route

검색결과 206건 처리시간 0.023초

오대산국립공원 내 뱀류 로드킬 분포현황 및 발생예측 모델링 (Distribution and Prediction Modeling of Snake Roadkills in the National Parks of South Korea: Odaesan National Park)

  • 김석범;박일국;박대식
    • 한국환경생태학회지
    • /
    • 제36권5호
    • /
    • pp.460-467
    • /
    • 2022
  • 오대산국립공원 내 뱀류 로드킬의 발생 경향 파악 및 예방을 위하여 2006-2017년 사이 공원 내에서 발생한 뱀류 로드킬 자료를 확보 및 분석하였고, 잠재적 발생지 예측을 위하여 종분포모델을 제작하였다. 연구기간 동안 뱀류 로드킬은 600m 대의 양쪽 환경이 산림-수계인 도로에서 가장 많이 발생하였다. 모델링 결과에서 뱀류 로드킬 발생 가능성은 고도 700m 이하의 하천과의 거리가 25m 부근인 완만한 경사의 도로의 로드킬 발생확률이 높게 나타났다. 국립공원 내 주요 로드킬발생 예측지역은 국도 6호선 도로 위 공원 남쪽 경계로부터 약 2.2km 지역과 약 11.7km 지역이, 지방도 446호선 도로 위 공원 남쪽 경계로부터 약 3.44km 지역이었다. 본 연구결과는 해발고도 700m 이하 수계와 인접한 도로 주변에 우선적으로 대체 일광욕 장소, 생태통로 및 도로의 유입을 막는 울타리의 설치가 산림에서 뱀류 로드킬을 줄이는 효과적인 방안이 될 것을 제시한다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

어린이집 보조인력의 노동실태 및 요구분석: 보조교사, 대체교사, 부담임 교사를 중심으로 (Analysis of the Present Condition and Demand for the Assistant Workforce in Korean Childcare Center)

  • 박창현;김상림
    • 한국보육학회지
    • /
    • 제18권2호
    • /
    • pp.85-102
    • /
    • 2018
  • 본 연구의 목적은 어린이집 보조인력의 노동실태와 요구를 파악하고, 보육교사 정책에 시사점을 제공하는 것이다. 연구의 목적을 달성하기 위해 2017년 8월 한달간 총 190명의 어린이집 보조인력인 누리 일반 보조교사, 보육도우미, 대체교사, 부담임교사를 대상으로 온라인 설문조사를 실시하였다. 보조인력의 노동실태와 요구분석을 위해 현 기관 취업경로 및 근무이유, 근로여건, 직무 및 교육실태, 애로사항을 조사하였다. 분석방법으로는 SPSS 12.0을 활용하여 빈도분석과 차이분석을 실시하였다. 주요 연구결과는 다음과 같다. 첫째, 어린이집 보조인력은 본인의 형편에 맞는 시간대에 일할 수 있어 노동을 선택하였으며, 진입경로로는 보조교사, 대체교사는 주로 육아종합지원센터의 구인광고를 통해, 보육도우미와 부담임은 지인소개 및 추천을 통하는 것으로 나타났다. 둘째, 근로여건에서는 일일 근무시간은 '4~8시간'인 경우가 73.7%, '51만 원 이상~100만 원 미만'인 경우가 57.9%였다. 하루 평균 휴게시간은 약 30분, 17%는 휴게시간이 전무한 것으로 나타났다. 셋째, 직무 및 교육실태를 살펴보면, 보조인력은 '유아지도 및 상호작용', '청소 청결 관련 업무'를 가장 활발히 수행하였으며, '청소 청결 관련 업무'와 '아침 돌봄 야간 돌봄'에 대한 인력 충원이 시급하다고 인식하였다. 넷째, 애로사항에서 보조 인력은 임금과 관련된 불만족과 고용불안정에 어려움을 느끼고 있었으며, 비정규직의 정규직화에 동의하는 이유는 고용 안정성 때문으로 나타났다. 마지막으로 비정규직 문제해결을 위한 선결과제는 비정규직과 정규직의 임금격차 해소, 노동시간단축 및 노동조건 개선이었다. 본 연구는 그동안 정책연구에서 소외되었던 어린이집 보조인력에 대해 주목하고, 어린이집 보조인력의 입장에서 노동 실태에 응답한 결과를 제시했다는 점에서 의의가 있다.

휴대폰 기지국 정보를 이용한 O/D 추정기법 연구 (Origin-Destination Estimation Based on Cellular Phone's Base Station)

  • 김시곤;유병석;강승필
    • 대한교통학회지
    • /
    • 제23권1호
    • /
    • pp.93-102
    • /
    • 2005
  • 통행기종점(Origin-Destination)은 경로 선택 및 통행 배정 등 교통계획 측면에서 중요한 정보 중 하나이다. O/D 예측은 대부분 현장 조사나 가구 면접조사를 통하여 표본 O/D를 산출하고 이를 전수화하는 것이 전통적인 방법이고, 가로 교통량과 통행배정모형과의 상호관계 속에서 동적 O/D를 추정하고자 하는 연구도 있다. 그러나, 최근에는 휴대폰 보급의 괄목할만한 증대에 따라 휴대폰 정보를 이용하여 O/D를 추정하는 연구에 관심이 기울어지고 있다. 본 연구에서는 휴대폰 기지국 정보를 이용한 O/D 추정 방법론을 제시하고, 휴대폰 기지국 기반 O/D를 행정동 기반 O/D로 변환하는 방법론을 제시한다. 연구를 위해 청주시에서 운행중인 택시에 GPS 장비 및 휴대폰 거치대를 설치하여 GPS 위치 좌표, 휴대폰 기지국 좌표를 수집하였고, 이중 3주간의 자료를 디지털 맵에 맵매칭시켜 기지국 위치 기반 O/D와 GPS 위치 기반 O/D를 산출하였다. GPS 위치 기반 O/D를 이용하여 주간 O/D 통행패턴, 주중 O/D와 주말 O/D 통행패턴, 일평균 O/D와 오전${\cdot}$오후 첨두시 O/D 통행패턴 사이의 관계를 산점도 및 상관계수로부터 유추한 견과, 주중 O/D와 주말 O/D간에는 통행패턴의 차이가 있으며, 오전 첨두시와 오후 첨두시의 통행패턴 역시 차이가 아는 것을 확인할 수 있었다. 휴대폰 기지국 기반 O/D를 행정동 기반 O/D화하는 방법으로 GPS 분포비를 이용한 방법과 기지국 커버리지 면적비를 이용한 방법을 제시하였으며, 두 방법 모두 참 O/D라 생각할 수 있는 GPS 위치 기반 O/D와 크게 다르지 않은 것을 상관계수, 평균절대오차율(MAE), 제곱근 평균제곱오차(RMSE)를 통하여 확인하였다. 향후 휴대폰 정보만을 이용하는 경우에는 휴대폰 기지국 커버리지 면적비를 이용하는 방법을 이용하면 O/D를 추정할 수 있을 것으로 판단된다. 또한 현재의 표본 택시 O/D를 전수화하는 방법도 제시하였다.

멧돼지(Sus scrofa) 서식지 및 이동 특성을 고려한 연결성 모델링 연구 (A Study on the Connectivity Modeling Considering the Habitat and Movement Characteristics of Wild Boars (Sus scrofa))

  • 이현정;김휘문;김경태;정승규;김유진;이경진;김호걸;박찬;송원경
    • 한국환경복원기술학회지
    • /
    • 제25권4호
    • /
    • pp.33-47
    • /
    • 2022
  • Wild boars(Sus scrofa) are expanding their range of behavior as their habitats change. Appearing in urban centers and private houses, it caused various social problems, including damage to crops. In order to prevent damage and effectively manage wild boars, there is a need for ecological research considering the characteristics and movement characteristics of wild boars. The purpose of this study is to analyze home range and identify land cover types in key areas through tracking wild boars, and to predict the movement connectivity of wild boars in consideration of previous studies and their preferred land use characteristics. In this study, from January to June 2021, four wild boars were captured and tracked in Jinju city, Gyeongsangnam-do, and the preferred land cover type of wild boars was identified based on the MCP 100%, KDE 95%, and KDE 50% results. As a result of the analysis of the home range for each individual, it was found that 100% of MCP was about 0.68km2, 2.77km2, 2.42km2, and 0.16km2, and the three individuals overlapped the home range, refraining from habitat movement and staying in the preferred area. The core areas were analyzed as about 0.55km2, 2.05km2, 0.82km2, and 0.14km2 with KDE 95%., and about 0.011km2, 0.033km2, 0.004km2, and 0.003km2 with KDE 50%. When the preferred land cover type of wild boar was confirmed based on the results of analysis of the total home range area and core area that combined all individuals, forests were 55.49% (MCP 100%), 54.00% (KDE 95%), 77.69% (KDE 50%), respectively, with the highest ratio, and the urbanization area, grassland, and agricultural area were relatively high. A connectivity scenario was constructed in which the ratio of the land cover type preferred by the analyzed wild boar was reflected as a weight for the resistance value of the connectivity analysis, and this was compared with the connectivity evaluation results analyzed based on previous studies and wild boar characteristics. When the current density values for the wild boar movement data were compared, the average value of the existing scenario was 2.76, the minimum 1.12, and the maximum 4.36, and the weighted scenario had an average value of 2.84, the minimum 0.96, and the maximum 4.65. It was confirmed that, on average, the probability of movement predictability was about 2.90% better even though the weighted scenario had movement restrictions due to large resistance values. It is expected that the identification of the movement route through the movement connectivity analysis of wild boars can be suggested as an alternative to prevent damage by predicting the point of appearance. In the future, when analyzing the connectivity of species including wild boar, it is judged that it will be effective to use movement data on actual species.

북서태평양에 서식하는 살오징어(Todarodes pacificus) 계군 분석에 대한 고찰 (Stock Identification of Todarodes pacificus in Northwest Pacific)

  • 김정연;문창호;윤문근;강창근;김경렬;나태희;최은정;이충일
    • 한국해양학회지:바다
    • /
    • 제17권4호
    • /
    • pp.292-302
    • /
    • 2012
  • 본 종설논문은 살오징어의 기존 및 최근에 새롭게 적용되고 있는 계군 분석방법들을 비교 분석하여 각 분석방법의 장단점과 분석방법간의 상호보완에 대하여 고찰하였다. 살오징어는 북서태평양의 넓은 지역을 회유하는 어종으로 생태계 및 상업적으로 중요한 자원이다. 살오징어는 해양환경변화의 생물학적 지표로서의 가능성을 평가 받고 있으며, 장단기적인 어획량 및 분포역의 변화가 환경 변화와 함께 나타난다. 예를 들어, 1987/1988 무렵에 발생한 기후체제전환 이후 한류성 어종으로 분류되는 명태의 어획량은 급감하여 현재까지 그 영향이 지속되고 있는 반면, 살 오징어 어획량은 크게 증가하였다. 현재까지 명태 어획량의 감소에 대하여 남획과 기후변화에 초점이 맞추어진 해석이 있으나, 뚜렷한 원인 분석은 이루어지지 않고 있다. 그 이유 중 한 가지는 계군 분석에 근거한 생태, 환경적 측면에 대한 정확한 원인 분석이 이루어지지 않고 있는 것과 관련이 된다. 계군은 유사한 생물학적 특징을 가진 개체들이 제한된 영역 내에서 유성생식과정을 통하여 동일한 유전자 풀(gene pool)을 공유하는 집단으로, 동일 계군을 형성하는 개체들은 산란에서 자원으로 가입 후 다시 재생산 과정에 이르기까지 시간 및 공간적으로 각기 다른 환경의 영향을 받을 수 있다. 따라서, 종에 대한 정확한 계군 분석은 자원의 효과적인 관리 및 급격한 변화에 대한 중요한 대응 방안의 역할을 할 수 있다. 살오징어 계군 분석에 적용된 주요 방법은 크게 4가지로 형태학적 방법, 생태학적 방법, 표지방류법, 유전학적 방법이 있다. 형태학적인 방법은 분석방법이 가장 간단하고 다수의 개체를 비교적 쉽게 분석할 수 있지만 각 형질들은 성장기간 동안 환경에 의해 영향을 많이 받게 되어 개체간의 차이가 생긴다. 생태학적 방법은 주로 개체의 생리적인 변화와 분포 및 회유상태, 기생충의 기생상태나 종류 및 기생률 등을 분석, 산란장의 차이를 알아보는 연구이며, 현재 활발히 연구되고 있는 방법으로 유사한 환경에서 생활하는 집단을 알 수 있지만 유전적으로 같은 집단인지는 알기 어렵다. 표지방류법은 직접적인 방법으로 계군의 회유 및 분포, 산란장의 위치를 파악할 수 있지만 수거가 어렵고 초기 단계에는 표식을 하기 어렵다. 수산생물의 계군 분석을 위한 유전학적 방법은 자원관리학적 연구에 관한 기본적 정보를 제공해 왔다. 계군 분석을 위한 유전학적 방법은 이에 사용하는 유전자 마커(marker)의 감도에 따라 결정되며, 유전자 마커의 다형성이 높은 것을 선택해야 한다. 계군 분석을 위한 유전자 마커로는 오랜 기간 동안 동위효소 다형이 사용되어졌으며, 최근에는 mitochondria, microsatellite와 같이 DNA 염기배열 중에서도 변이성이 높은 영역을 선택하여 마커로 이용한 연구가 증가되고 있다. 기존의 형태학적 방법, 표지방류법, 생태학적인 방법들은 살오징어의 생활사, 회유경로, 산란장의 변화 등을 밝혀내어 계군을 파악하는데 많은 기여를 하였지만 여전히 각 해역에 분포하는 살오징어의 계군을 파악하기에는 어려움이 있다. 최근에는 기존의 계군 분석이 지닌 장단점을 비교 분석하여 복합적인 방법의 계군 분석이 이루어지며, 이러한 정보들을 바탕으로 유전학적 방법을 보완한다면 살오징어 자원의 변동에 대한 관리 방안을 마련하는데 도움을 줄 것이다.