• Title/Summary/Keyword: Alternative Refrigerants

Search Result 138, Processing Time 0.052 seconds

Condensing heat transfer characteristics of alternative refrigerants in small diameter tubes (세관내 대체냉매의 응축 열전달 특성)

  • 오후규;홍진우
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.5
    • /
    • pp.396-402
    • /
    • 1999
  • 1980년대부터 본격적으로 제기된 대기 환경 오염 문제로 인해서 CFCs 및 HCFCs계 냉매에 대한 대체 연구가 활발히 진행되었는데, 이와 관련한 열교환기의 고성능화, 콤팩트화 등에 관한 연구도 광범위하게 이루어지고 있다. 이중에서 특기할만 한 것은 종래의 전열관보다 관경이 대단히 적은 세관을 적용하는 경우가 있으며, 그 적응 범위도 점점 더 넓어질 전망이다. 이것은 유효전열 면적의 극대화, 난류효과의 상승, 가공성기 향상, 유연성 등 세관만이 가질 수 있는 여러 가지 전열 성능상의 장점 때문이라 생각한다.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants (대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.18-25
    • /
    • 2016
  • Enhanced tubes are used widely in the evaporators of large tonnage compression-type refrigerators. The evaporators consist of tube bundles, and the refrigerant properties are dependent on the locations in the tube bundles. In particular, the saturation temperatures of low pressure refrigerants (R-11, R-123) are strongly dependent on the locations due to the saturation temperature-pressure curve characteristics. Therefore, for the proper design of evaporators, local property predictions of the refrigerants are necessary. In this study, a computer program that simulates the flooded refrigerant evaporators was developed. The program incorporated theoretical models to predict the refrigerant shell-side boiling heat transfer coefficients and pressure drops across the tube bundle. The program adopted an incremental iterative procedure to perform row-by-row calculations over the specified incremental tube lengths for each water-side pass. The program was used to simulate the flooded refrigerant evaporator of the "T" company operating with R-123, which yielded satisfactory results. The program was extended to predict the performance of the flooded refrigerant evaporator operating with R-11, R-123, and R-134a. The effects of bundle aspect ratio are investigated.

Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter (내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수)

  • 박기호;서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.

Experimental studies on the evaporative heat transfer of R32/290 mixtures in a horizontal smooth tube (평활관 내 R32/290 혼합냉매의 증발열전달 특성에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Ju-Hyok;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.268-273
    • /
    • 2005
  • Because of environmental issues caused by CFC, HCFC or HFC refrigerants, new alternative refrigerants has gained a significant attention. This paper presents experimental information on heat transfer coefficient and pressure drop behavior during evaporation process of R32/290 mixtures in a horizontal smooth tube. A smooth tube with outer diameter of 5 mm and length of 5 m was selected as a test tube. Heat transfer coefficients and pressure drop characteristics were measured for a range of mass fluxes from 497 to 994 $kg/m^2s$, heat fluxes from 12 to 20 $kW/m^2$ and for several mixture compositions(100/0, 75/25, 58.4/41.6, 2s/75, 100/0 by wt% of R32/290). The differences of measured heat transfer characteristics among various R32/290 refrigerant mixtures were analyzed for various compositions.

  • PDF

Thermodynamic Properties of Alternatives for R12, R22 and Performances of Refrigerator (R12 및 R22대체냉매의 열역학적 물성치 및 냉동기의 성능비교)

  • Chang, S.D.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • Thermodynamic properties of alternatives for R12 and R22 were estimated and performances of refrigerating cycle using these refrigerants were compared. In this study, we adopt R134a, R22/R142b, R22/R152a, R22/R152a/R124 as alternatives for R12 and R32/R134a for R22. Thermodynamic properties of these refrigerants were estimated using modified CSD equation of state. Cycle simulations of the refrigerating system considering heat source were carried out in order to compare the performance of the system. R134a shows relatively lower COP than R12 but very similar VCR. R22/R142b(50/50 mass fraction), R22/R152a(10/90), R22/R152a/R124(30/25/45) are good for the substitutes of R12 and R32/R134a(30/70) is appropriate for that of R22 in view of COP and VCR.

  • PDF

Flow Condensation Heat Transfer Coefficients of Pure Refrigerants (순수냉매의 흐름응축 열전달계수)

  • 김신종;송길홍;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2002
  • Flow Condensation heat transfer coefficients (HTCs) of Rl2, R22, R32, Rl23, Rl25, R134a, R142b were measured experimentally on a horizontal plain tube. The experi- mental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in a refrigerant loop was made of a copper tube of 8.8 mm inner diameter and 1000 mm length respectively. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. All tests were performed at a filed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, 300 kg/$m^2$s. The experimental result showed that flow condensation HTCs increase as the quality, mass flux, and latent heat of condensation increase. At the same mass flux, the HTCs of R32 and R142b were higher than those of R22 by 35~45% and 7~14% respectively while HTCs of R134a and Rl23 were similar to those of R22. On the other hand, HTCs of Rl25 and Rl2 were lower than those of R22 by 28 ~30% and 15 ~25% respectively Finally, a new correlation for flow condensation HTCs was developed by modifying Dobson and Chato's correlation with the latent heat of condensation considered. The correlaton showed an average deviation of 13.1% for all pure fluids data indicating an excellent agreement.

Evaporating heat transfer characteristics of R-22 alternative hydrocarbon refrigerants at heat exchanger using grooved inner tube (내면 핀관을 사용하는 열교환기에서 R-22 대체 탄화수소계 냉매의 증발 열전달 특성)

  • 홍진우;박승준;노건상;구학근;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2000
  • In this paper, evaporation heat transfer characteristics at a inner grooved tube were studied using a new natural refrigerants R-290, R-600a and HCFC refrigerant R-22. Experiments were performed in the inner tube with outside diameter of 12.70mm, having 75 fins with a fin height of 0.25mm. The following results were obtained from this research. On the evaporating heat transfer characteristics, the maximum increment of heat transfer coefficient was found in R-290. Average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smooth tube. Comparing the heat transfer coefficient between experimental results and simulation data of other's, the Kandlikar's correlated equation was closely approximated to the author's experimental results in the smooth tube or grooved inner one.

  • PDF

A Generalized Flow Model and Flow Charts for Predicting Mass Flow Rate through Short Tube Orifices (일반화된 오리피스의 유량예측 상관식 및 유량선도)

  • Choi Jong Min;Kim Yongchan;Kwak Jae Su;Kwon Byong Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.895-900
    • /
    • 2004
  • With the phaseout of CFC and HCFC refrigerants, refrigeration and heat pump systems must be redesigned to match and improve system performance with alternative refrigerants. A generalized flow model for predicting mass flow rate through short tube orifices is derived from a power law form of dimensionless parameters generated by Pi-theorem. The database for developing the correlation includes extensive experimental data for R12, R22, R134a, R407C, R410A, and R502 from the open literature. The correlation yields an average deviation of $0.3\%$ and a standard deviation of $6.1\%$ based on the present database. In addition, rating charts for predicting refrigerant flow rate through short tube orifices are generated for R12, R22, R134a, R407C, R410A, and R502.

Flow Boiling Heat Transfer Characteristics of R22 Alternative Refrigerants in a Horizontal Smooth Tube (R22 대체냉매의 수평원관내 흐름비등 열전달 특성)

  • 한재웅;김신종;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-251
    • /
    • 2001
  • Flow boiling heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured for a horizontal plain tube. The test section was made of a copper tube of 8.8mm inner diameter and 1000mm length respectively. The refrigerant was heated by passing hot water through an annulus surrounding the test section. All tests were performed at a fixed refrigerant saturation temperature of $5^{\circ}C$ with mass fluxes of 100~300 kg/$m^2$,/TEX>s. HTCs were measured by two methods: the direct wall temperature measurement method and the indirect Wilson plot method. Experimental results showed that the Wilson plot method was affected greatly by the external test conditions and yielded inconsistent results. For the mass flux of 100kg/$m^2$,/TEX>s, HTCs were almost constant regardless of the quality for a given refrigerant HTCs of R134a and R407C were similar to those of R22 while those of R410A were 60% higher than those of R22. For the mass fluxes of 200 and 300kg/$m^2$,/TEX>s, HTCs of R407C were almost the same as those of R22, while HTCs of R134a and R410A were 12-13% and 20~23% higher than those of R22 respectively. For pure refrigerant, Shah\`s correlation yielded a good agreement with the measured data both qualitatively and quantitatively.

  • PDF