• Title/Summary/Keyword: Alternative Refrigerants

Search Result 138, Processing Time 0.029 seconds

Development Trends of Refrigerant and Refrigerant Oil for Automotive Air-conditioner (차량용 에어컨에 사용되는 냉매 및 냉동기유의 기술 동향)

  • Lee, Daewoong;Hwang, Seungyong
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.206-214
    • /
    • 2019
  • This study investigates alternative refrigerants and refrigerant oils as well as the tendency of protecting the global environment in view of automobile air-conditioning systems. Since decades, the R12 refrigerant is not used in automobile air-conditioners because of the ozone depletion potential (ODP) problem, and for the last 20 years, the ODP-free R134a refrigerant is leading the new automotive air-conditioning market. However, owing to its high global warming potential (GWP), the R134a refrigerant use in automobile air-conditioning system is also prohibited by law, and alternative refrigerants with a low GWP need to be proposed. Therefore, recently, the application of R1234yf, R152a, or other alternative refrigerants has started worldwide. By contrast, natural refrigerant R744 was introduced in the market several years ago by VDA (Verband Der Automobilindustrie), which is a German association in the automotive industry. This study also deals with refrigerant oils. For a long time, polyalkylene glycol (PAG) oil has been traditionally used with automobile air-conditioners, and polyolester (POE) oil is suitable for HEV, PHEV, and EV air-conditioning systems, where it is used by the electrically driven compressor owing to its excellent electrical insulation properties. Finally, PAG is an excellent lubricant for all the R134a, R152a, R1234yf, and R744 refrigerants, and has the advantage that it can be applied rapidly to alternative refrigerant air-conditioning systems.

An Experimental Study on Performance of Heat Pump System Using Hydrocarbon Refrigerants by Changing Indoor Load (실내 부하 변동에 따른 탄화수소계 냉매를 이용한 히트펌프 성능에 관한 실험적 연구)

  • Kim, Jae-Dol;Seong, Gwang-Hoon;Jeong, Seok-Kwon;Yoon, Jung-In;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.204-210
    • /
    • 2006
  • This study presents heat pump system characteristics using hydrocarbon refrigerants as alternative refrigerant for R-22 with respect to the variation of indoor load. Pure R-22 and R-290. R-600a, R-1270 were considered as working fluids The experimental apparatus was constructed to investigate the performance of heat pump using the air as a heat source. The performance were calculated based on compression shaft work. refrigeration capacity. pressure ratio, discharge temperature and COP. The experimental results show that the COP and refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. Through the above. hydrocarbon refrigerants are good alternatives in the heat pump system for R-22.

Study on the Prediction of Pressure Drop for Alternative Refrigerants with lubricant in Micro-Fin Tubes (미세휜관내 윤활유를 포함한 대체냉매의 압력강하 예측에 관한 연구)

  • Choi, Jun-Y.;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a pressure drop correlation for evaporation and condensation of alternative refrigerant with oil in micro-fin tubes. The correlation was developed from a data base consisting of oil-free pure and mixed refrigerants in micro-fin tube; Rl25 R134a. R32 R410a(R32/R125 50/50% mass), R22, R407c(R32/R125/R134a, 23/25/52% mass) and R32/R134a(25/75% mass). The micro-fin tube used in this paper had 60 0.2mm high fins with a 18 helix angle. The cross sectional flow area $(A_c)$ was $60.8 mm^2$ giving an equivalent smooth diameter$(D_e)$ of 8.8mm. The hydraulic diameter $(D_h)$ was estimated to the 5.45mm. The new correlation was obtained by replacing the friction factor and the tube-diameter in Bo Pierre correlation by a friction factor derived from pressure drop data for a micro-fin tube and the hydraulic diameter, respectively. This correlation was also used to predict some pressure data with a lubricant after using a mixing viscosity rule of lubricants and refrigerants. As a result, the new correlation was also well predicted to the measured data within a mean deviation of 19.0%.

  • PDF

Performance Characteristics Study on an Alternative Refrigerant in Low Temperature Applications (저온용 대체냉매의 성능 특성 연구)

  • SHIN, JEONG-SUB;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.462-469
    • /
    • 2016
  • This paper presents the results of thermodynamic cycle analysis and performance tests of alternative mixtures in low temperature applications. Two near-azeotropic binary mixtures R-152a/R-1270 (35:65 by wt.%) and R-290/E170 (35:65 by wt.%) are considered in this study. They have zero ODP (Ozone Depletion Potential) and much lower GWP (Global Warming Potential) than R-404A which is an alternative of R-502. Refrigeration cycle characteristics such as cooling capacity, coefficient of performance, suction and discharge pressures and temperatures are compared to those for the baseline refrigerants (R-502 and R-404A) cycles. The performance tests are conducted at the evaporation and condensation temperatures of $5^{\circ}C$ and $45^{\circ}C$, subcooling and superheating temperatures of $5^{\circ}C$, respectively. Performance comparisons between baseline and alternative refrigerants are conducted on the same cooling capacity. The system performance of newly proposed refrigerant mixtures show promising results.

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

Pool Boiling Heat Transfer Correlation for Pure Refrigerants (순수냉매의 풀비등 열전달 상관식)

  • 고영환;김종곤;송길홍;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.941-949
    • /
    • 2000
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HFC22, HFC125 and HFC32 on a horizontal smooth tube have been measured. The experimental apparatus is specially designed to simulate the real heat transfer tube with the use of the secondary fluid of water as a heat source rather than a conventional electric heat source. Data were taken in the order of decreasing heat flux starting at $80 ㎾/m^2\; and \;ending\; at\; 5㎾/m^2\;in\; the\; poo\;l temperature\; at\; 7^{\circ}C$, Test results showed that HTCs of HFC125, and HFC32 are 50~67% higher than those of HCFC22. It is also found that some of the popular pool boiling heat transfer correlations in the literature are not good to predict the HTCs of newly developed alternative refrigerants. A new correlation was developed by a regression analysis which is based upon the consistent data obtained in this study and it showed an excellent agreement with all experimental data having an absolute mean deviation of less than 10%.

  • PDF