• Title/Summary/Keyword: Alternative External Carbon Source

Search Result 11, Processing Time 0.026 seconds

Development of Alternative External Carbon Source from Wasting Carbonaceous Organic Resource and Full Scale Application (유기폐자원을 이용한 고도하수처리 대체탄소원 개발 및 실플랜트 적용)

  • Jung In Chul;Kim Ho Young;Kang Dong Hyo;Jung Joung Soon;Lee Sang Won;Lim Keun Taek;Kim Chang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.911-919
    • /
    • 2004
  • The purpose of this research was evaluated economical effect to apply alternative external carbon source. Conventional activated sludge process in municipal wastewater treatment plant was adapted and introduced to Biological nutrient removal processes to meet the newly enforced effluent quality standard for nutrient removal in Korea. Low $COD/NH_4^+-N$ ratio and higher nutrient concentration of influent characteristics force to inject external carbon source for denitrifying recycled nitrate. In the most case, methanol was used as external carbon source. But Methanol is expensive and very dangerous in handling. So we could find cheaper and safer external carbon source substituted methanol in last study. This alternative external carbon source is named RCS(recoverd carbon source) and a by-product of fine chemical product at chemical plant. When RCS was applied real municipal wastewater treatment plant, average $55\~65\%$ of T-N removal efficiency, 8.8mg/l of effluent T-N concentration, 11.3mg/l of effleunt COD concentration were obtained without effluent COD increase as against used methanol. To apply RCS in municipal wastewater treatment plant obtain approximately $\74.5%$ expenditure cost reduction in comparison with methanol dosage cost.

Development and Full-scale Application of the Alternative Carbon Source Based on the Substrate Compatibility (미생물 순응 호환성에 기반한 대체탄소원 개발 및 실용화 사례)

  • Jung, In-Chul;Jo, Hyeon-Gil;Lee, Du-Ho;Kang, Dong-Hyo;Lim, Keun-Taek;Lee, Sung-Hak;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.491-498
    • /
    • 2005
  • J sewage treatment plant (WWTP) in Busan has used methanol as an external carbon source for the biological denitrification process. Methanol is widely used. but rather expensive and very dangerous in handling. Therefore, it has been required that the economic alternative carbon source must be developed. By-product from a fine chemical industry can be Purified by removing high molecular weight substances using the ultrafilter membrane separation process and RBDCOD fraction becomes $98{\sim}99%$ of COD substances in the purified by-product. The purified by-product containing three types of alcohols, methanol, prophylenglycol and methoxypropanol; showed similar chemical characteristics to the methanol, a main external carbon source, in biodegradation pathway. Shown above, the compatibility between main and alternative carbon sources has been achieved. Also very short or no adaptation period is necessary in the case of exchanging these carbon sources. The compatibility between external carbon sources is an essential element for stabilizing WWTP operations. During the full-scale application test of the by-product, the alternative carbon source line got on par with the treatment efficiency of the methanol line. With the test result, J-WWTP changed methanol to a fine chemical by-product, in two out of three J-WWTP lines. Moreover, it is expected that 55.4% of the external carbon source cost reduction can be achieved in the alternative carbon source applied lines.

Assessment of Characteristics and Field Applicability with TPA By-Product as Alternative External Carbon Source (대체 외부탄소원으로서의 TPA 생산부산물 특성 및 현장적용성 평가)

  • Jung, In-Chul;Jun, Sung-Gyu;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.480-486
    • /
    • 2006
  • On account of exchanging main process from chemical precipitation for MLE(Modified Ludzark-Ettinger), an external carbon source was required for supplementation of carbon source shortage that was needed biological denitrification in the S sewage treatment plant(S-STP). In this study, NUR(nitrate uptake rate), OUR(oxygen uptake rate) test and a field application test was conducted for the applicability assessment of Terephtalic acid(TPA) by-product contained about 4.7% acetate as alternative external carbon source. As the results, TPA by-product shows more rapid acclimation than methanol, 8.24 mg ${NO_3}^--N/g$ VSS/hr specific denitrification rate, 3.70 g $COD_{Cr}/g\;NO_3$ C/N ratio and 99.4% readily biodegradable COD contents. In the results of field application, the nutrient removal efficiency was high and effluent T-N concentration is 8.2 mg/L. It is concluded that TPA by-product is the proper alternative external carbon source.

Evaluation of COD Solubilization and Reduction of Waste Activated Sludge by pH Control (pH 조절을 통한 폐활성 슬러지의 COD 가용화 및 감량화 평가)

  • Kim, Youn Kwon;Moon, Yong Taik;Kim, Ji Yeon;Seo, In Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.551-558
    • /
    • 2007
  • From the view point of biological wastewater treatment, C/N ratio is one of the most important factor in biological nutrient removal process. However, municipal sewage in Korea is characterized by extremely low content of carbon source and relatively higher portion of N source. Accordingly, it is necessary to dose external carbon source in order to obtain higher degree of carbon source within the process. In this study, the effects of pH pretreatment as an alternative plan for increasing carbon source on the cell disruption and COD solubility of waste activated sludge were conducted under well defined experimental conditions. During 5 hours, the value of COD solubilization rate ($S_R$) at pH 11.5 is approximately 4.4 times higher than the value of $S_R$ at pH 9.5. It is expected that the level of SCOD increased due to the result from cell disruption. However, VSS/TSS ratio was not significantly changed after 5 hours. As Alkalinity changes gradually from less than 15, 30 and 60 meq NaOH/L, average RBCOD/SCOD fraction showed 34, 36 and 45%,respectively.

ASSESSMENT OF SUBSTRATE REMOVAL CHARACTERISTICS ACCORDING TO ACCLIMATION PERIODS BY OUR AND NUR TESTS

  • Jung, Jung-Eun;Lee, Sung-Hak;Im, Jeong-Hoon;Poo, Kyoung-Min;Kim, Jong-Rock;Kim, Chang-Won
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.156-163
    • /
    • 2006
  • In this study, substrate removal characteristics were analyzed to reduce the cost of external carbon dosage at Sudokwon Landfill Site Management Corporation in Korea by utilizing oxygen uptake rate (OUR) and nitrate uptake rate (NUR) tests. To estimate and evaluate the substrate removal characteristics obtained by the batch tests, the lab-scale MLE process was operated. By-products of J Co. (sugar manufactory) and S Co. (fine chemical industry) were selected as the concerned carbon sources through a comparison of carbon and nitrogen contents. MeOH was tested as a control experiment. Until the steady state, the fraction of $RBDCOD_{OUR}$ concentration to COD concentration of J Co., S Co. by-products and MeOH increased and reached levels of 98%, 82%, and 100%, respectively. During the 20th operating day, the fraction of $RBDCOD_{NUR}$ concentration to COD concentration was 95%, 81%, and 83%, respectively. These fractions of $RBDCOD_{NUR}$ concentration to $RBDCOD_{OUR}$ concentration increased according to acclimation periods and reached levels of 99%, 97%, and 81%, respectively, on the 20th day. The results obtained from the lab-scale MLE process operation using the concerned carbon sources as external carbon were similar to that observed by OUR and NUR tests.

Removing Nitrate from Groundwater by Biofilm Filtration (생물막 여과에 의한 지하수중 질산성 질소의 제거)

  • Lee, Yong-Doo;Ko, In-Beom
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.83-89
    • /
    • 1998
  • The drinking water supply in Cheju entirely depends on the ground water and recently the polluted ground water bores are increasing. In 1993 Cheju Province Health-Environment Institute reported that the ground water quality of 26 of 98 bores under the drinking water quality standard. Therefore there are many investigation in the needs of the nitrate removal in the drinking water in the regin with no alternative water resources. In this study, the following results are obtained to remove the nitrate in biofilm filtration process in which uses ethanol as external carbon source. Over 90% of nitrate is removed after 10 days of experiment. The nitrate removal rate on filtration velocity is about 100% at 50m/day and 100m/day, and about 56% at 200m/day. The removal rate is reduced in 27% at 400m/day. Using ethanol as the external carbon source, denitrification kinetic is 1st-order. Denitrification constant k is 8.004($hr^{-1}$). The amount of the denitrificated-Nitrogen is increased as the contact time increased. Deoxydation rate constant ${\gamma}$ is 11.895($hr^{-1}$). 0.968g of ethanol(as TOC) is needed to remove 1g of nitrate and 0.291g is required to remove 1g of dissolved oxygen.

  • PDF

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum;Lee, Yeon-Ju;Wang, Tianshi;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

Analysis of the Substrate Removal Characteristics of TPA Using OUR and NUR Tests, and Simulation with ASM1 (호흡률과 탈질률 실험과 ASM1을 이용한 전산모사를 통한 TPA의 기질 분해 특성 평가)

  • Jung, In-Chul;Lee, Sung-Hak;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • In this study, nitrate uptake rate(NUR) and oxygen uptake rate(OUR) tests were conducted for the assessment of application of Terephtalic acid(TPA) by-product as an alternative external carbon source for sewage treatment plant(STP). With the ASM1 installed in GPS-X the substrate removal characteristic was investigated with simulation by obtained data from NUR and OUR test. As a result, the fraction of RBDCOD(readily biodegradable COD) was mort than 90% and specific denitrification rate was observed about 8.00 mg $NO_3^-$-N/g VSS/hr that was similar to conventional external carbon source. In the next step, sensitivity analysis for heterotrophic biomass in ASM1 was conducted. Optimized parameters of ${\mu}_{max,H}$, $K_s$, ${\eta}_g$, and $b_H$ were 6.60/day, 23.3 mg/L, 0.88, and 0.54/day, respectively. Then, relative mean squared error(RMSE) was reduced to about 40%. Optimized parameters value were well corresponded with the substrate removal characteristics of high maximum and final endogenous specific OUR and high specific NUR.

A Use of Heterotrophic Denitrification for the Supply of Alkalinity during Sulfur-utilizing Autotrophic Denitrification (황-이용 독립영양 탈질시 알칼리도 저감을 위한 종속영양 탈질의 이용방안)

  • Lee, Dong-Uk;Park, Jae-Hong;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1995-2005
    • /
    • 2000
  • The use of heterotrophic denitrification as an alternative method for supplying alkalinity during sulfur-utilizing autotrophic denitrification was evaluated by examining the effects of external carbon source (both type and concentration) and HRT on denitrification efficiency. Concentrations of $NO_3{^-}-N$ and $COD_{Cr}$ of nitrified landfill leachate used for experiment were 700-900mg/L and 900-2500mg/L. respectively, All experiment was conducted with sulfur packed bed reactors (SPBRs) which were operated at $35^{\circ}C$. The fraction of $NO_3{^-}-N$ removed by heterotrophic denitrification ($HDNR_{fraction}$) to balance the alkalinity consumption by autotrophic denitrification varied with the type of external carbon source. When methanol and sodium acetate was added at theoretical HDNRfraction value. 100% denitrification was achieved without alkalinity addition. However, glucose and molasses require $HDNR_{fraction}$ value greater than theoretical value for complete denitrification. The EBCT and volumetric loading rate at which 100% denitrification efficiency could be achieved were 6.76 h and $2.84kg-NO_3{^-}-N/m^3{\cdot}d$, respectively, based on the fact that 100% denitrification occurred within the bottom 11.5 cm layer of the SPBR. The maximum nitrogen removal rate occurred with 89% removal efficiency at loading rate of $5.05kg-NO_3{^-}-N/m^3{\cdot}d$. However, at short EBCT, clogging of SPBR was observed with excess growth of heterotrophic denitrifiers. This problem may be eliminated by back washing or by separating of heterotrophic denitrification from sulfur-utilizing denitrification.

  • PDF

Characteristics of Electricity Generation by Microbial Fuel Cell for Wastewater Treatment (폐수처리를 위한 미생물연료전지의 전기생산 특성)

  • Kim, Sun-Il;Lee, Sung-Wook;Kim, Kyung-Ryang;Lee, Jae-Wook;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.213-217
    • /
    • 2009
  • Microbial fuel cells (MFCs) have been known as a new alternative energy conversion technology for treating wastewater and producing electricity simultaneously. A MFC converts the chemical energy of the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions. To examine the performance of MFC, in this work, the characteristics of the efficiency of wastewater treatment and generation of electricity was evaluated for sewage. When acetate as a carbon source was added into the sewage, the removal efficiency of COD was increased from 75.7% to 88.2% and the voltage was increased significantly from 0.22 V to 0.4 V. The influence of distance between anode and cathode was examined and the effect of the surface area of anode was investigated under the various external resistances. It was found that the maximum power density was $610mW/m^2$ and power generation was effective when the distance between the electrodes was shorter and the surface area of the anode was smaller.