• Title/Summary/Keyword: Alternative Crops

Search Result 130, Processing Time 0.027 seconds

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

  • Yun, Hwi-Geon;Kim, Dong-Jun;Gwak, Won-Seok;Shin, Tae-Young;Woo, Soo-Dong
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.192-198
    • /
    • 2017
  • The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

Evaluation on the Environmental and Social Value Awareness of the Heat Supply for the Horticultural Greenhouse using Thermal Effluents from Power Plant (화력발전소 온배수열 활용 시설하우스 열공급에 대한 환경 및 사회적 가치 인식 비교 분석)

  • Kim, Ga-Hee;Ahn, Cha-Soo;Um, Byung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.125-134
    • /
    • 2018
  • Recently, interest in alternative energy has been increasing to reduce greenhouse gas emissions and fossil fuel consumption in accordance with the United Nations Framework Convention on Climate Change(UNFCCC). Accordingly, there is a need to use waste heat that unused throughout industrial systems for lowering the concentration of energy on fossil fuels. In particular, government support projects for the energy recycling of agriculture and fisheries such as cultivation of tropical crops and aquaculture are being actively carried out by utilizing waste heat and thermal effluents caused from large-scale industrial complexes including power plants. The study was conducted on supplier (power plant), consumer (farmer) and stakeholders (constructor and local governments) of domestic demonstration areas using waste heat that is abandoned from the power plant in the form of thermal effluents. It investigated the overall improvement and feasibility of government funded projects through field interviews and questionnaire-type surveys. The results of this study are expected to provide basic directions for the operation of the project in terms of nationwide expansion and diffusion of the heat source supply project at horticultural greenhouse by utilizing the thermal effluents from power plant.

Intercropping in Rubber Plantation Ontology for a Decision Support System

  • Phoksawat, Kornkanok;Mahmuddin, Massudi;Ta'a, Azman
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Planting intercropping in rubber plantations is another alternative for generating more income for farmers. However, farmers still lack the knowledge of choosing plants. In addition, information for decision making comes from many sources and is knowledge accumulated by the expert. Therefore, this research aims to create a decision support system for growing rubber trees for individual farmers. It aims to get the highest income and the lowest cost by using semantic web technology so that farmers can access knowledge at all times and reduce the risk of growing crops, and also support the decision supporting system (DSS) to be more intelligent. The integrated intercropping ontology and rule are a part of the decision-making process for selecting plants that is suitable for individual rubber plots. A list of suitable plants is important for decision variables in the allocation of planting areas for each type of plant for multiple purposes. This article presents designing and developing the intercropping ontology for DSS which defines a class based on the principle of intercropping in rubber plantations. It is grouped according to the characteristics and condition of the area of the farmer as a concept of the rubber plantation. It consists of the age of rubber tree, spacing between rows of rubber trees, and water sources for use in agriculture and soil group, including slope, drainage, depth of soil, etc. The use of ontology for recommended plants suitable for individual farmers makes a contribution to the knowledge management field. Besides being useful in DSS by offering options with accuracy, it also reduces the complexity of the problem by reducing decision variables and condition variables in the multi-objective optimization model of DSS.

Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.240-254
    • /
    • 2017
  • Cereal grains are the most important food source for humans. As the global population continues to grow exponentially, the need for the enhanced yield and minimal loss of agricultural crops, mainly cereal grains, is increasing. In general, harvested grains are stored for specific time periods to guarantee their continuous supply throughout the year. During storage, economic losses due to reduction in quality and quantity of grains can become very significant. Grain loss is usually the result of its deterioration due to fungal contamination that can occur from preharvest to postharvest stages. The deleterious fungi can be classified based on predominance at different stages of crop growth and harvest that are affected by environmental factors such as water activity ($a_w$) and eco-physiological requirements. These fungi include species such as those belonging to the genera Aspergillus and Penicillium that can produce mycotoxins harmful to animals and humans. The grain type and condition, environment, and biological factors can also influence the occurrence and predominance of mycotoxigenic fungi in stored grains. The main environmental factors influencing grain fungi and mycotoxins are temperature and $a_w$. This review discusses the effects of temperature and $a_w$ on fungal growth and mycotoxin production in stored grains. The focus is on the occurrence and optimum and minimum growth requirements for grain fungi and mycotoxin production. The environmental influence on aflatoxin production and hypothesized mechanisms of its molecular suppression in response to environmental changes are also discussed. In addition, the use of controlled or modified atmosphere as an environmentally safe alternative to harmful agricultural chemicals is discussed and recommended future research issues are highlighted.

Fermented Chaga-Cheonggukjang attenuates obesity condition and suppresses inflammatory response of the liver in high fat diet-induced mice

  • Sohn, Eun-Hwa;Park, Yuna;Na, Ha Gyoon;Kim, Min-Ah;So, Gyeongseop;Kim, Sung Hyeok;Jang, Ki-Hyo;Kim, Mi-Ja;Namkoong, Seung;Koo, Hyun Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.97-97
    • /
    • 2019
  • Chaga mushroom and Cheonggukjang have been used in alternative medicine. In this study, we determined the anti-obesity effects of fermented Chaga-Cheonggukjang (FCC), an extract prepared by secondary fermentation of a mixture of Cheonggukjang and Chaga by Lactobacillus acidophilus on highfat diet (HFD)-induced mice. Male ICR mice were fed a normal diet or HFD in the presence or absence of 3% and 5% FCC (FCC3 and FCC5). After 3 months, the mice were sacrificed, and serum and tissue samples were examined. Body weight and epididymal fat pad (EFP) weight were significantly lowered in FCC3 and FCC5 groups compared to those in the HFD control group. FCC supplementation suppressed serum triglyceride (TG) and increased serum HDL levels. Serum GOT, GPT, leptin levels and hepatic COX-2 mRNA expression were significantly higher in the HFD groups, and these increases were significantly attenuated by FCC supplementation. FCC suppressed body weight and EFP weight gain, as well as inflammatory responses in the liver in HFD-fed mice. Thus, FCC supplementation may have protective effects for obesity-related disease.

  • PDF

Damages of Young Persimmon Tree as Affected by Application of Immature Liquid Pig Manure

  • Choi, Seong-Tae;Park, Yeo-Ok;Ahn, Gwang-Hwan;Kim, Eun-Gyeong;Son, Ji-Young;Joung, Wan-Kyu;Hong, Kwang-Pyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.89-95
    • /
    • 2019
  • BACKGROUND: Liquid pig manure (LPM) has been used as an alternative for conventional fertilizers on some gramineous crops. However, its chemical properties varied widely depending on the degree of the digestion. A pot experiment was conducted to determine the responses of persimmon trees to immature (not well-digested) LPM application. METHODS AND RESULTS: Ten application levels of immature LPM, consisted of a total of 3 to 30 L in 3-L increment, were applied during summer to 5-year-old 'Fuyu' trees grown in 50-L pots. Increasing the LPM application rate caused defoliation, wilting, and chlorosis in leaves. When applied with the rate of 3 L during summer, the tree produced small fruits with low soluble solids and bore few flower buds the following season, indicating insufficient nutritional status. In trees applied with the LPM rates of 6~12 L, both fruit characteristics and above-ground growth of the trees appeared normal but some roots were injured. However, application of higher LPM rates than 27 L resulted in small size, poor coloration, or flesh softening of the fruits the current season. Furthermore, the high LPM rates caused severe cold injury in shoots during winter and weak shoot growth the following season. It was noted that the application of higher LPM rate than 9 L damaged the root, even though above-ground parts of the tree appeared to grow normally. CONCLUSION: The results indicated that an excessive immature LPM application could cause various injuries on leaves, fruits, and the roots in both the current and the following season.

Weed Population and Rice Yield in Organic Rice-Green Manure Crops Rotation System (녹비작물 이용 유기벼 재배지의 논잡초 발생과 벼 수량)

  • Choi, Bong-Su;Jeon, Weon-Tai;Lee, Yong-Hwan;Kim, Min-Tae;Eum, Sun-Pyo;Oh, Gae-Jung;Cho, Hyun-Suk;Park, Tae-Seon;Seong, Ki-Yeong
    • Korean Journal of Weed Science
    • /
    • v.31 no.4
    • /
    • pp.360-367
    • /
    • 2011
  • The use of green manure crop is one of the methods for alternative of chemical fertilizer as well as maintain of soil sustainability, therefore we evaluated the effect of green manure crops on rice growth and weed occurrence in rice-green manure crop double cropping system. The treatments consisted of incorporation of hairy vetch, barley or combined hairy vetch and barley without any agrochemical or fertilizer. In hand weeding, rice yield in hairy vetch only or hairy vetch and barley incorporated fields was attained by 90% and 93% of the conventional practice, respectively, while the value in barley incorporated fields was just 79%. Although the rice yields were lower than the hand weed control, similar trends in non-weed control were observed among all treatments. At maximum tillering stage, occurred weeds in hairy vetch, barley or hairy vetch and barley incorporated fields were five, five and two species, respectively, while those in conventional practice were six species. Also, the dry weight of weeds in hairy vetch and barley incorporated fields was decreased by 33% and 53% compared to it of conventional practice, while the value in hairy vetch and barley incorporated field was increased by 34%. Among all treatments, although occurrence density of Echinochloa crus-galli was lower than another weed species, the dry weight of it significantly increased. These results suggested that although continuous incorporation of proper amount of legume green manure crops was possible to productivity insurance of crop, but to attain it was essential to the effective management of weeds.

Screening Methods for Plant-Coating Materials and Transpiration Inhibitory Effect of Soybean Oil to Crops (식물 코팅 소재 선발법과 작물들에 대한 콩 오일의 증산 억제 효과)

  • Jung, In Hong;Park, No Bong;Kim, Sang-Yeol;Na, Young-Eun;Kim, Soon-Il
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.380-391
    • /
    • 2014
  • Plants as well as crops are damaged by a combination of the hot and dry winds that has been a major factor in the reduction of crop production. A means to protect them from damaging conditions is to consider a coating material. In this study, we established laboratory screening methods to find a coating material to protect a crop from rapid transpiration caused by various factors. In a test measuring the weight loss of kidney bean seedlings for 6 days, Avion treatments decreased its weight loss (P=0.05). Owing to long-time spend in completing this assay, we performed a more simple method using a cobalt chloride paper strip, which changes from blue to red colors under water condition. Beewax, guagum, paraffin liquid, soybean oil, and PE-635 gave a waterproofing effect above 37 and 43% at 0.5 and 1 h after treatment, respectively. However, these tested materials did not show significant waterproofing results at 2 h. Although the methods produced reasonable results, a screening method to obtain more objective data is needed. An alternative is to use an instrument that can detect the transpiration of crop leaves. In a preliminary test using barley leaves, a portable photosynthesis system showed transpiration inhibition of 2% soybean oil and 10 times-diluted Avion under field conditions. In another test using the leaves of maize seedlings and apricot tree, 2% liquid paraffin and plant oils such as apricot oil, linseed oil, olive oil, and soybean oil showed significant transpiration inhibition (P=0.05). Especially, paraffin liquid and soybean oil selected from above tests gave good transpiration inhibitory effects against rice at 2%. In addition, the mixture of 2% soybean oil and a spreader showed more elevated inhibition results comparing with soybean oil or the spreader alone indicating that the spreader may be attributed to more uniform diffusion of the hydrophobic material onto the leaf surface of maize seedlings. The hydrophobic material coated physically the stomata and cuticle layers on leaf surfaces of rice. These hydrophobic materials screened in this study are expected to be used as plant coating materials.

Effect of Green Manure Crops Incorporation with Rice Cultivation on Soil Fertility Improvement in Paddy Field (벼 재배시 녹비작물 혼입에 따른 지력개선 효과)

  • Yang, Chang-Hyu;Ryu, Jin-Hee;Kim, Taek-Kyum;Lee, Sang-Bog;Kim, Jae-Duk;Baek, Nam-Hyun;Kim, Sun;Choi, Weon-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.371-378
    • /
    • 2009
  • This study was carried out to investigate the improvement effect of soil fertility by incorporation of GMC(green manure crops) at rice cropping after cultivation GMC such as the barley for alternative rye in paddy field over the past two years(2006~2007). Plots, which consisted of incorporation time of GMC as rye; heading stage, barley; heading stage, heading stage of rye and 10days after heading stage were divided by amount of applied rates; standard fertilizer fertilization, diagnosis fertilization and non-fertilization. we investigated change of soil physico-chemical properties, degree of decomposition on GMC in soil, growth and yield potential. The obtained results were summarized as follows. The fresh weight of GMC at incorporation time on heading stage of rye, heading stage and 10days after heading stage of barley were $2,715,\;2,352,\;2,867kg\;10a^{-1}$ respectively. Content of total nitrogen at three incorporation times was 1.31, 1.46, 1.38% and the C/N ratio were 33.4, 28.7, and 34.6, respectively. Some soil physical properties, such as soil hardness and bulk density tended to decrease with incorporation of GMC, while surface soil depth and porosity were increased. Some soil chemical properties, such as content of exchangeable cations and cation exchangeable capasity(CEC) were increased with incorporation of GMC compared with before experiment. Rice yields was increased 3~9% in diagnosis application plots on application of barley compared with control($559kg\;10a^{-1}$) and incorporation of barley caused to improve perfect kernel ratio 73.6~78.7% in appearance characteristics of brown rice compared with cotrol(73.0%). It was found that incorporation with 10days after heading stage of barley was more effective to reduce chemical nitrogen fertilizer and to improve soil fertility.