• Title/Summary/Keyword: Alternating flow

Search Result 112, Processing Time 0.03 seconds

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Design of Semiconductor-Operated Bidirectional Transformers Driven by Polarities of Alternating Voltage Sources (교류 전압원의 극성에 따라 구동하는 양방향 반도체 변압기의 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.253-259
    • /
    • 2015
  • In this paper, we propose a transformer of alternating voltage source utilizing a semiconductor, operating in bidirectional fashion. Transformer is a device transferring energy by inductive coupling between its winding circuits. Conventional transformer is a device, composed of a primary coil and a secondary coil, transforming an alternating voltage. The system we propose is designed with a single circuit transforming the level of voltage signal in two ways; from the source to the load, and vice versa. For semiconductor switches, the NPN transistor is connected to the alternating voltage source terminal, and emitter terminal is connected to the inductor in the system as an energy storage element. The control signal is applied to the base terminal of the semiconductors. We have shown that the system we propose, by adopting only one circuit, drives an alternating voltage transformer that changes the amplitudes of voltage signal in reciprocal way.

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

A Feasibility Study on the 3-Dimensional Flow of the Jet under the Static Electromagnetic Field

  • Cho I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.144-145
    • /
    • 2003
  • A feasibility study on the alternating jet flow under the static electromagnetic field was carried out. When a fluid with electrical conductivity lies in the static electromagnetic field and moves electric current occurs in the fluid. Due to the electromagnetic field and the electric current, lorentz force generates in the fluid, which undergo the 'breaking' effect to the fluid. In order to simulate the complex fluid flow in the magnetic field, electromagnetic and fluid flow analysis need to be solved simultaneously. In the present study, a SOLA (SOLution Algorithm) scheme was used in order to calculate electromagnetic and fluid flow field. Jet flow without an electromagnetic field was compared with analytical solution in order to validate the flow analysis scheme. Effect of jet velocity on the flow pattern down the jet was investigated.

  • PDF

A Comparison of Distributed Optimal Power Flow Algorithm (최적조류계산 분산처리 기법의 비교)

  • Kim, Ho-Woong;Park, Marn-Guen;Kim, Bal-Ho;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1046-1048
    • /
    • 1999
  • This Paper compares two mathematical decomposition coordination methods to implementing the distributed optimal Power flow(OPF) using the regional decomposition: the Auxiliary Problem Principle(APP) and the Alternating Direction Method(ADM), a variant of the conventional Augmented Lagrangian approach. A case study was performed with IEEE 50-bus system.

  • PDF

Detection of Metal Impurities at Aluminum processing factory (알루미늄 가공 현장에서 금속 불순물 검출)

  • Hwang, Jong-Myung;Ahn, Bu-Hwan;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.320-326
    • /
    • 2009
  • This paper proposed a new magnetic field detection algorithm to detect metal pieces in food producing processes. This algorithm can detect mixed metal pieces by sensing magnetic field. Some metal pieces are passed through an over-current circuit to magnetize them. The magnetic field sensor can detect the change in the magnetic field on theconveyor belt caused by the flow of the metal pieces in the food product. However, such a method detects the output of signals that change their amplitude and phase according to the movement of the conveyor belt with the food product, in which the equilibrium of the positive signal that is created in the receiver coil loses its balance due to the magnetized material. This includes not only the signal elements resulting from the effect of the alternating magnetic fields of the mixed metals, but also the signal elements resulting from the effect of the alternating magnetic fields of the examined object itself.

  • PDF

Constrained Multi-Area Dispatch Scheduling Algorithm with Regionally Distributed Optimal Power Flow Using Alternating Direction Method (ADM 기반 분산처리 최적조류계산을 이용한 다지역 제약급전계획 알고리즘)

  • Chung, Koo-Hyung;Kim, Bal-Ho;Lee, Jong-Joo;Kim, Hak-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • This paper proposes a constrained multi-area dispatch scheduling algorithm applicable to interconnected power system operations. The dispatch scheduling formulated as an MIP problem can be efficiently computed by GBD algorithm. GBD guarantees adequate computation speed and solution convergence by reducing the dimension of the dispatch scheduling problem. In addition, the regional decomposition technique based on ADM is introduced to obtain efficient inter-temporal OPF solution. It can find the most economic dispatch schedule incorporating power transactions without each regional utility's private information open.

Development of AC Thermal Anemometry (교류방식 유속 측정법 개발)

  • Jung, Won-Seok;Kwon, Oh-Myoung;Choi, Du-Seon;Park, Seung-Ho;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.230-237
    • /
    • 2004
  • This paper suggests and demonstrates a novel flow measurement technique: tunable AC thermal anemometry that allows simple integration, robust measurement, and extremely high accuracy. The principle and simple theoretical analysis of the technique are presented. To find the optimal condition at which the phase lag becomes most sensitive to flow speed change, the phase lag was measured scanning the heating frequency from 1 to 100 Hz, while the flow speed of ethanol was increased stepwise from 0 to 40 mm/s. The sensitivity of phase lag depended on the heating frequency and the flow speed. It was possible to measure the flow speed of 0.7 mm/s with the resolution of 0.1 mm/s at 4 Hz.

Evaluation of Mixing Performance in Several Designs for Microfluidic Channel Mixers

  • Wang, Yang-Yang;Suh, Yong-Kweon;Kang, Sang-Mo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2811-2816
    • /
    • 2007
  • We conducted a numerical study of AC-electroosmotic (alternating current) effect on the fluid flow and mixing in a 3-D microchannel. The microchannel used as an efficient micro-mixer is composed of a channel and a series of pairs of electrodes attached in zigzag pattern on the bottom wall. The AC electric field is applied to the electrodes so that a steady flow current takes place around the electrodes. This current is flowing across the channel and thus contributing to the mixing of the fluid within the channel. We performed numerical simulations by using a commercial code to obtain a steady flow field. This steady flow is then used in evaluation of the mixing performance via the concept of mixing index. It was found that good combination of two kinds of electrode, which gave us a good mixing, is not simple harmonic. And when the length ratio of these two kinds of electrode is 2:1, we can get the best mixing effect.

  • PDF

Simple and Highly Efficient Droplet Merging Method Using a Microfluidic Device (미세유체소자를 이용한 간단하고 효율적인 액적의 병합)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. Using a cross channel with inflows of one oil phase through the main channel and two water phases through the side channels, two droplets of different sizes can be generated alternatingly in accordance with flow rate difference of the water phases. It is shown that for a fixed oil phase flow rate, the flow rate of one water phase required for alternating droplet generation increases linearly with the flow rate of another water phase. By this method, the droplets are merged with 100 % efficiency without any additional driving forces.