• Title/Summary/Keyword: Alstroemeria

Search Result 11, Processing Time 0.024 seconds

Production of transgenic Alstroemeria plants containing virus resistance genes via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.164-171
    • /
    • 2020
  • Transgenic Alstroemeria plants resistant to Alstroemeria mosaic virus (AlMV) were generated through RNA-mediated resistance. To this end, the friable embryogenic callus (FEC) of Alstroemeria was induced from the leaf axil tissue and transformed with a DNA fragment containing the coat protein gene and 3'-nontranslated region of AlMV through an improved particle bombardment system. The bar gene was used as a selection marker. More than 300 independent transgenic FEC lines were obtained. Among these, 155 lines resistant to phosphinothricin (PPT) were selected under low stringent conditions. After increasing the stringency of PPT selection, 44 transgenic lines remained, and 710 somatic embryos from these lines germinated and developed into shoots. These transgenic shoots were then transferred to the greenhouse and challenged with AlMV. In total, 25 of the 44 lines showed some degree of resistance. PCR analysis confirmed the presence of the viral sequence. Virus resistance was observed at various levels. Establishment of an efficient transformation system for Alstroemeria will allow inserting transgenes into this plant to confer resistance to viral and fungal pathogens. Accordingly, this is the first report on the production of a transgenic virus-resistant Alstroemeria and lays the foundation for alternative management of viral diseases in this plant.

Review on the development of virus resistant plants in Alstroemeria

  • Park, Tae-Ho;Han, In-Song;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.370-378
    • /
    • 2010
  • This review describes the stratagies of development of virus-resistant Alstroemeria plants using the genetic modification system. Despite of increasing of its importance in cut flower market, improvements of some horticultuirally important traits such as fragrance, long vase-life, virus resistance and tolerance against abiotic stresses are lack of the breeding program in Alstroemeria. Of these traits, virus-resistance is quite difficult to develop in Alstroemeria plants due to the limitations of genetic variation in the existed germplasm. To extend the genetic variation, plant biotechnological techniques such as genetic transformation and tissue culture should be combined to develop virus-resistant line in Alstroemeria. In this review, several strategies for the generation of virus-resistance by using natural resistance genes, pathogen-derived genes and other sources including pathogen-derived proteins, virus-specific antibodies and ribosome-inactivating proteins are presented. Also, brief histories of breeding, tissue culture, and transformation system in Alstroemeria plants are described to inderstand of the application of transgenic approach for the development of virus-resistance in Alstroemeria species.

Alstroemeria plants and its biotechnological applications

  • Lim, Sung-Soo;Lee, Sang-Il;Kang, Se-Chan;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.219-224
    • /
    • 2012
  • Alstroemeria plants are widely cultivated in many countries especially in Western Europe and North America and popularity has increased in recently due to its long-base life, large variety of colors and low energy requirement during cultivation period. So far, more than 60 species have been released on the commercial market in the world. To meet the demand of consumer and develop the elite Alstroemeria cultivars, conventional breeding including cross-hybridization and selection as well as mutation breeding were used. However, as other important ornamental plants such as lily, rose, carnation and orchids accepted the biotechnological methods, this newly-born approach should be applied and developed an optimized the genetic transformation system. Then, this biotechnological approach can be fused with the conventional breeding methods and thus can be contributed to the production of elite Alstroemeria plants containing agriculturally good genetic traits which are useful for the both farmers and consumers in the future. In this paper, we reviewed the botanical and genetical features of Alstroemeria plants and its biotechnological approaches in the last decades.

Establishment of propagation system for Alstroemeria plants by using hormones and gelling agents (호르몬 및 배지 고형제를 이용한 알스트로메리아 식물체 대량증식 체계 확립)

  • Yang, Hwan Rae;Lee, Sang Hee;Kim, Jong Bo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.167-171
    • /
    • 2018
  • Alstroemeria (Alstroemeriaceae) is one of the most important cut flowers in international market. But, its characteristics such as low multiplication rates, time consuming process and high risk of carrying viral disease, in vitro propagation techniques based on rhizome meristems culture have been developed. In this study, we conducted this experiment to investigate the effect of hormones and gelling agents on the growth for Alstroemeria in vitro tissue culture. The highest number of shoot and root formation were obtained from the growth medium contains BA 1.0 mg/L and NAA 0.1 mg/L. When 0.25% of gelrite was added up to 50% shoots and roots length were observed compared to other gelling agents. Using these results, it is expected to contribute to the establishment of mass production systems in Alstroemeria.

Variation of CO2 Concentration in Greenhouses and Effects on Growth and Yield in Alstroemeria with CO2 Supplementation

  • Seonjin Lee;WonSuk Sung;Donguk Park;Pilsoo Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • We analyzed the variations in the CO2 concentration and temperature between a CO2-enriched and control greenhouse. We cultivated Alstroemeria 'Hanhera' in the two greenhouses and assessed the growth parameters (stem length, stem thickness, and the number of flowers) and yield. The CO2-enriched greenhouse had a CO2 generator that produced CO2 at rate of 0.36 kg/h and its windows were programmed to open when the temperature exceeded 20℃ and close when it dropped below 15℃. The control greenhouse had no additional CO2 supplementation, and its windows were programmed to open when the temperature exceeded 20℃ and close at approximately 17:00. In the morning, CO2 concentration remained above 500 ppm in the CO2-enriched greenhouse, which was higher than that in the control greenhouse (approximately 370 ppm). The ventilation effect only through the side windows to reduce the temperature in both greenhouses did not appear dynamically. CO2 supplementation promoted plant growth, resulting in a significant increase in plant yield of over 60% compared to that of the control greenhouse. Our findings suggest that elevated CO2 concentration in the morning can significantly promote the growth and development of Alstroemeria during the winter.

An efficient protocol for the production of transgenic Alstroemeria plants via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.66-72
    • /
    • 2020
  • Alstroemeria plants were transformed by using an improved particle-gun-mediated transformation system. Friable embryogenic callus (FEC) induced from the leaves with axil tissues of Alstroemeria plant was used as the target tissue. Also, FEC was transformed with the bar gene was used as a selectable marker. In the case of plasmid pAHC25, 7.5% of the twice-bombarded FEC clumps showed blue foci, whereas the clumps with single bombardment showed only 2.3%. Additionally, a 90° rotation with double bombardment led to a higher frequency (6 times) of luciferase gene expression in PBL9780 than the control treatment. After 8 weeks of bombardment, more than 60 independent transgenic lines were obtained for pAHC25 and nearly 150 independent transgenic lines were obtained for PBL9780, all of which were resistant to PPT and demonstrated either GUS or luciferase activity. Regarding effect of osmotic treatment (0.2 M mannitol) with 7 different periods, the highest transient gene expression was obtained in 8 h before and 16 h after transformation in both pAHC25 and PBL9780. Compared with the control, at least three times more GUS foci and photons were observed in this treatment. With respect to different combinations of mannitol and sorbitol with 8 h before and 16 h after transformation, high numbers of transient and stable transgene expressions were observed in both 0.2 M mannitol and 0.2 M sorbitol used in the osmotic pre-culture. This combination showed the highest transformation efficiency in both pAHC25 (8.5%) and PBL9780 (14.5%). In the control treatment, only 10% of the FEC clumps produced somatic embryos. However, by using 0.2 M mannitol and 0.2 M sorbitol, the frequency of somatic embryos increased to 36.5% (pAHC25) and 22.9% (PBL9780). Of the somatic embryos produced, at least 60% germinated. Approximately 100 somatic embryos from these 210 independent transgenic lines from 2 plasmids developed into shoots, which were then transferred to the greenhouse. PCR analysis confirmed the presence of the bar gene. This is the report on the production of transgenic Alstroemeria plants by using particle bombardment with a high efficiency, thereby providing a new alternative for the transferring of gene of interests in Alstroemeria in the breeding program in the future.

Effects of Circulating Coolant in High Temperature Season and warm Water in Low Temperature Season by Controlling Soil Temperature on the Growth and Flower Quality in Alstroemeria (하절기 및 동절기 근권부 온도조절이 알스트로메리아 절화 생육 및 품질에 미치는 영향)

  • Cho, Kyung Chul;Hwang, In Taek;Kim, Hee Gon;Ki, Gwang Yeon;Kim, Byeong Sam;Yoon, Bong Ki;Kim, Jeong Keun;Choi, Kyung Ju;Han, Tae Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.4
    • /
    • pp.187-191
    • /
    • 2011
  • Rising soil temperature was effectively controled by shading net of 50% and cooled water to maintain average $18.8^{\circ}C$ (maximum $23^{\circ}C$), then shading net of 50% and ground water to maintain average $23.2^{\circ}C$ (max. $28.5^{\circ}C$), shading paint of 30% and shading net (50%) to maintain average $24^{\circ}C$ (max. $30^{\circ}C$) in that order. Alstroemeria 'Modena' most affected by shading and cooling water was better in shoot length as 95.9 cm and fresh weight as 67 g than those of other treatments. The production of cut flower was increased more 121% with treatment 50% shading net and cooling water, 59% with 50% shading net and ground water, and 65% with 30% shading paint than that of 50% shading net, respectively. Soil temperature was higher $8^{\circ}C$ with the plot of circulating warm water than untreated control plot. Alstroemeria 'Aspen', 'Modena', and 'Chanel' increased more plant growth such as plant height, fresh weight in warm water than in untreated control plot, but Alstroemeria 'Bordeaux' decreased plant height. Because of increasing plant growth, flower quality such as peduncle length, peduncle diameter, floret number and flower weight of 4 all cultivar was better in the plot of circulating warm water than untreated control plot. Also, the production of cut flower was increased the most in Alstroemeria 'Modena' by 38%, 'Aspen', 'Bordeaux', and 'Chanel' in that order.

Effects of 1-MCP on Vase Life of Cut Alstroemeria, Snapdragon, Dahlia, and Lily (1-MCP 처리가 알스트로메리아, 금어초, 다알리아, 나리 절화의 수명에 미치는 영향)

  • Nam, Jin Soo;Yoon, Hye Lim;Shim, Sung Im;Kim, Hong Yul;Son, Beung Gu;Huh, Moo Ryong;Oh, Wook;Lim, Ki Byung
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.3
    • /
    • pp.139-143
    • /
    • 2011
  • This research was conducted to figure out the effect of 1-methylcyclopropene, one of inhibitors of ethylene on the vase life of cut alstroemeria 'Alpine', snapdragon 'Fuji no Yuki', dahlia 'Toast, and lily 'Georgia'. Four kinds of cut flowers were treated with 250, 500, and 750 ppb of 1-MCP respectively for 12 hours. In case of cut alstroemeria, no significant difference was found between the untreated control and the treated ones in the days to flowering. The vase life in the treated ones, however, was extended for over two days, and the treated one with 250 ppb had the longest record with 17.1 days. In every treated ones of cut snapdragon, the remaining florets was more than that of the untreated control. The vase life showed, however, no difference. With the 1-MCP treatment, the vase life of cut dahlia was longer about two days than that of the untreated control. However, water uptake showed the opposite result. The vase life of cut lily showed no significant differences in all treatments. In case of water absorption, the treated one with 750 ppb uptaken more water by 3 ml.

Hybridity Verification of Progenies Obtained from Ovule Culture by Using RAPD Markers in Reciprocal Crosses of Alstroemeria (알스트로메리아 배주배양을 통하여 획득한 정역교배 자손의 혼종성 분석)

  • Lee, Ja-Hyun;Joung, Youn-Hwa;Han, Tae-Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.4
    • /
    • pp.231-237
    • /
    • 2011
  • In this study, we performed ovule culture after reciprocal crosses of two Alstroemeria accessions and investigated genetic contribution of parents by using RAPD markers. The best method was half-ovule culture on MS medium supplemented with $60g{\cdot}L^{-1}$ sucrose and $2.2g{\cdot}L^{-1}$ gelrite at 14 days after pollination. Embryos began to germinate after 6 weeks of culture. The complete plantlets were formed after 4 months of culture. In eight progenies and two parental cultivars, 59 polymorphic bands were obtained out of 89 total bands by RAPD analysis using 7 primers. Eight $F_1$ progenies from the crosses between two accessions using reciprocal crosses showed 1:1 contribution of maternal and paternal parents. It is confirmed that $F_1$ progenies were obtained from parental accessions by using RAPD markers. We conclude this cross combination showed pre-fertilization barriers with incompatibility between stigma or style, and pollen because progeny number was different in each cross combination. Thereby, it warrants overcoming pre-fertilization barrier together with post-fertilization barrier in order to broaden the heterozygosity within progeny populations in Alstroemeria breeding program.