• Title/Summary/Keyword: Alpha-galactosidase A

Search Result 122, Processing Time 0.026 seconds

Histologic Characteristics and Mechanical Properties of Bovine Pericardium Treated with Decellularization and ${\alpha}$-Galactosidase: A Comparative Study

  • Min, Byoung-Ju;Kim, Yong Jin;Choi, Jae-Woong;Choi, Sun Young;Kim, Soo Hwan;Lim, Hong-Gook
    • Journal of Chest Surgery
    • /
    • v.45 no.6
    • /
    • pp.368-379
    • /
    • 2012
  • Background: Bioprostheses for cardiovascular surgery have limitations in their use following as calicification. ${\alpha}$-galactosidase epitope is known as a stimulant of immune response and then shows a progressing calcification. The objective of this study was to evaluate histologic characteristics and mechanical properties of decellularization and treated with ${\alpha}$-galactosidase. Materials and Methods: Bovine pericardial tissues were allocated into three groups: fixation only with glutaraldehyde, decellularization with sodium dodesyl sulfate and decellularization plus treatment with ${\alpha}$-galactosidase. We confirmed immunohistological characteristics and mechanical properties as fatigue test, permeability test, compliance test, tensile strength (strain) test and thermal stability test. Results: Decellularization and elimination of ${\alpha}$-gal were confirmed through immunohistologic findings. Decellularization had decreased mechanical properties compared to fixation only group in permeability (before fatigue test p=0.02, after fatigue test p=0.034), compliance (after fatigue test p=0.041), and tensile strength test (p=0.00). The group of decellularization plus treatment with ${\alpha}$-galactosidase had less desirable mechanical properties than the group of decellularization in concerns of permeability (before fatigue test p=0.043) and strain test (p=0.001). Conclusion: Favorable decellularization and elimination of ${\alpha}$-gal were obtained in this study through immunohistologic findings. However, those treatment including decellularization and elimination of ${\alpha}$-gal implied the decreased mechanical properties in specific ways. We need more study to complete appropriate bioprosthesis with decellularization and elimination of ${\alpha}$-gal including favorable mechanical properties too.

${\alpha}$-Galactosidase from Bacillus megaterium VHM1 and Its Application in Removal of Flatulence-Causing Factors from Soymilk

  • Patil, Aravind Goud G.;Kumar S.K., Praveen;Mulimani, Veerappa H.;Veeranagouda, Yaligara;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1546-1554
    • /
    • 2010
  • A bacterial strain capable of producing extracellular ${\alpha}$-galactosidase was isolated from a sample of sugarcane industrial waste. Microbiological, physiological, and biochemical studies revealed that the isolate belonged to Bacillus sp. Furthermore, based on a 16S rDNA sequence analysis, the new isolate was identified as Bacillus megaterium VHM1. The production of ${\alpha}$-galactosidase was optimized based on various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen sources, respectively. The optimum pH was 7.5 and the enzyme remained stable over a pH range of 5-9. The enzyme was optimally active at $55^{\circ}C$ and thermostable with a half-life of 120 min, yet lost 90% of its residual activity within 120 min at $60^{\circ}C$. One mM concentrations of $Ag^2$, $Cu^2$, and $Hg^{2+}$ strongly inhibited the ${\alpha}$-galactosidase, whereas the metal ions $Fe^2$, $Mn^{2+}$, and $Mg^{2+}$ had no effect on the ${\alpha}$-galactosidase activity, and $Zn^{2+}$, $Ni^{2+}$, and $Ca^{2+}$ reduced the enzyme activity slightly. When treated with the B. megaterium VHM1 enzyme, the flatulence-causing sugars in soymilk were completely hydrolyzed within 1.5 h.

Purification and Characterization of α-Galactosidase from Lactobacillus salivarius subsp. salivarius Nam27

  • Bae, Hyoung-Cchurl;Choi, Jong-Woo;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.27 no.1
    • /
    • pp.102-109
    • /
    • 2007
  • Lactobacillus salivarius subsp. salivarius CNU27 possessed a high level of ${\alpha}$-galactosidase activity. Purified ${\alpha}$-galactosidase was obtained after sonication of harvested cell pellet followed by DEAE-Sephadex A-50 and Mono Q anion exchange chromatography. The specific activity of the purified enzyme was 8,994 units/mg protein which is 17.09 times higher than that in crude extract. The native enzyme was a monomer with a molecular mass of 56,397.1 dalton. The optimum temperature and pH for the enzyme were $40^{\circ}C$ and 6.0, respectively. The enzyme was stable between 25 and $50^{\circ}C$. However, ${\alpha}$-galactosidase activity was lost rapidly below pH 4.5 and above pH 8.5. The enzyme activity decreased to 6.73% and 4.30% of the original activity by addition of $Cu^{2+}$ and $Hg^{2+}$, respectively. Other metal compounds did not affect the enzyme activity significantly. The enzyme liberated galactose from melibiose, raffinose, and stachyose. The rate of substrates hydrolysis was measured by HPLC. Raffinose, stachyose and melibiose were completely decomposed after 24 hr at $40^{\circ}C$.

Gel-promoting Ability of the Various Gums by the Purified Enzyme (효소적 가수분해법에 의한 Gum류의 Gel유동특성 변화)

  • 박귀근
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.465-468
    • /
    • 2002
  • The galactose/mannose ratio of guar gum, guar gum treated with purified ${\alpha}$-galactosidase and locust bean gum were investigated. Gel-promoting property of enzyme-treated guar gum increased when the galactose/mannose ratio was about 1 : 3.2, which was close to the ratio of 1 : 3.3 for locust bean gum. And the ratio was obtained when the guar gum was hydrolyzed by the enzyme for 24 hr. It is clear that enzymatic depletion of galactose from guar gum by sunflower seed ${\alpha}$-galactosidase would lead to a significant increase in gelation ability. The mixture of xanthan gum and guar gum, and xanthan gum, guar gum and enzyme-treated copra meal were also investigated in viscosity behavior.

Production of Sialytrisaccharides Using $\beta$-Galactosidase and trans-Sialidase in One Pot

  • Lee, Sun-Gu;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.215-218
    • /
    • 2000
  • Sialytrisaccharides based on $\beta$-galactosyldisaccharides were synthesized using $\beta$-galactosidase and trans-sialidase in one pot. Using $\beta$-galactosidase from Bacillus Ciculans and trans-sialidase from Trypanosoma cruzi simulaneously, 6mM sialyltrisaccharides composed of about 95% NeuAc$\alpha$(2,3)Gal$\beta$(1,4)GlcNAc and 5% NeuAc$\alpha$(2,3)Gal$\beta$(1,6)GlcNAc were produced from a reaction mixture containing 25mM o-nitropheny1-$\beta$-D-galsctolneuraminic acid. One beauty of this reaction was that a secondary hydrolysis of the disaccharide intermediate occurring between the activated galactopyranoside and N-acetylgucosamine was prevented. Using $\beta$-galactosidase from Escherichia cloi and the same trans-sialidase, 15mM sialyltrisaccharides composed of about 90% NeuAc$\alpha$(2,3)Gal$\beta$(1,6)GlcNac and 10% NeuAc$\alpha$(2,3)Gal$\beta$(1,4)GlcNAc were produced from a reaction misture containing 400nM galactose, 800nM N-acetylglucosylation rection between galactose and N-actylgucosamine was diminant since the disaccharide intermediate mainly resulted sreulted in the silylated product.

  • PDF

Characteristic Features of an ${\alpha}-Galactosidase$ from Penicillium purpurogenum

  • Park, Gwi-Gun;Lee, Sang-Young;Park, Boo-Kil;Ham, Seung-Shi;Lee, Jin-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.90-95
    • /
    • 1991
  • A ${\alpha}-galactosidase{\;}({\alpha}-D-galactoside$ galactohydrolase; EC 3.2.1.22) was purified from the culture filtrate of Penicillium purpurogenum by DEAE-cellulose column chromatography, gel filtration of Bio gel p-l00, and subsequent SP-Sephadex C-25 chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 63,000 and pH 4.0 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The galactosidase exhibited maximum activity at pH 4.5 and $55^{\circ}C$, and was stable between pH 2 and 5, and also stable up to $40^{\circ}C$. The enzyme activity was not affected considerably by treatment with other metal compounds except mercuric chloride and silver nitrate. Copra galactomannan was finally hydrolyzed to galactose, mannose and mannobiose through the sequential actions of the purified galactosidase and mannanase from the same strain. The enzyme hydrolyzed melibiose and raffinose, but not lactose.

  • PDF

Hydrolysis of Non-digestible Components of Soybean Meal by α-Galactosidase from Bacillus coagulans NRR1207 (Bacillus coagulans NRR1207이 생산하는 α-galactosidase에 의한 대두박 비소화성분의 가수분해)

  • Ra, Seok Han;Renchinkhand, Gereltuya;Park, Min-gil;Kim, Woan-sub;Paik, Seung-Hee;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1347-1353
    • /
    • 2018
  • The fermentation of non-digestible soy meal can convert polysaccharides into many compounds that have a wide variety of biological functions. Bacillus strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. A highly active ${\alpha}$-galactosidase (${\alpha}$-d-galactoside galactohydrolase, EC 3.2.1.22) was isolated from a bacterium in a traditional Korean fermented medicinal herb preparation. The isolate, T2-16, was identified as Bacillus coagulans based on its 16S rRNA sequence and biochemical properties, and the strain was named Bacillus coagulans NRR-1207. When incubated in 10%(w/v) skim milk, Bacillus coagulans NRR1207 caused a decrease in the pH of the culture medium, as well as an increase in titratable acidity and viable cell counts. This strain also showed higher activities of ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, naphthol-AS-BO-phosphohydrolase, and acid phosphatase when compared to other enzymes. It hydrolyzed oligomeric substrates, such as raffinose and stachyose, and liberated galactose, indicating that the Bacillus coagulans NRR1207 ${\alpha}$-galactosidase hydrolyzed the ${\alpha}$-1,6 glycoside linkage. These results suggest that the decreased stachyose and raffinose contents observed in fermented soy meal are due to this ${\alpha}$-galactosidase activity. Bacillus coagulans NRR1207 therefore has potential probiotic activity and could be utilized in feed manufacturing, as well as for hydrolyzing non-digestible soy meal components.

Expression of ${\alpha}$-Galactosidase Gene from Leuconostoc mesenteroides SY1 in Lactobacillus brevis 2.14

  • Lee, Kang-Wook;Park, Ji-Yeong;Park, Jae-Yong;Chun, Ji-Yeon;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1115-1118
    • /
    • 2008
  • ${\alpha}$-Galactosidase gene (aga) from Leuconostoc mesenteroides SY1 was expressed in a heterologous host, Lactobacillus brevis 2.14 using an Escherichia coli-Leuconostoc shuttle vector, pSJE. pSJEaga (pSJE carrying aga) was introduced into Lactobacillus brevis 2.14 by electroporation and transformation efficiency was $1.1{\times}10^3$ per ${\mu}g$ DNA. L. brevis transformants (TFs) showed higher ${\alpha}$-galactosidase (${\alpha}$-Gal) activities than cells containing pSJE. Transcription levels of aga in L. brevis 2.14 grown on different carbon sources (1%, w/v) were examined by slot blot analysis. Aga transcript levels and ${\alpha}$-Gal activities were higher in cells grown on melibiose, raffinose, and galactose than cells on glucose, sucrose, and fructose. Western blot result showed that L. brevis 2.14 harboring pSJEaga produced much more ${\alpha}$-Gal when grown on melibiose than on glucose.

Porduction and Enzymatic Characteristics of ${\alpha}-Galactosidase$ from Aspergillus niger (Aspergillus niger에 의한 ${\alpha}-Galactosidase$의 생산 및 효소적 특성)

  • Chun, Hyang-Sook;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.79-84
    • /
    • 1988
  • ${\alpha}$-Galactosidase from Aspergillus niger as a possible enzyme for removal of flatulence factors in soybean foods was produced the highest in 120 hours in either Czapeck-Dox liquid medium or wheat bran solid medium. The most efficient carbon and nitrogen sources in Czapeck-Dox medium were raffinose and sodium nitrate, respectively, whereas the addition of the sources showed negative effects in wheat bran. pH optima for enzyme activity and stability were 4.0-5.0 and 3.5-6.5, respectively, and optimum temperature for stability was $40-50^{\circ}C$. Upon reaction on p-nitrophenyl-${\alpha}$-D-galactoside, Michaelis constant was 0.42 mM and maximum velocity was 152 ${\mu}moles$ substrate/minute/kg solid medium. Mercuric chloride acted as a strong noncompetitive inhibitor and p-chloromercuribenzoate, even in low concentration, acted as a competitive inhibitor. Crude ${\alpha}$-galactosidase hydrolyzed raffinose and stachyose completely, giving spots of monosaccharides only on thin-layer chromatogram.

  • PDF

Enzymatic Characteristics of ${\alpha}-Galactosidase$ for the Removal of Flatulence Factor in Soybean (대두(大豆)의 Flatulence Factor 제거(除去)를 위한 ${\alpha}-Galactosidase$ 효소제의 특성)

  • Jung, Sang-Soo;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.450-457
    • /
    • 1986
  • For the removal of raffinose and stachyose related to flatulence in soybean, ${\alpha}-Galactosidase$ activity of six commercial enzyme preparations was compared and their enzymatic characteristics were investigated. Among the tested enzymes, one product from Aspergillus niger was shown to be the most potent in ${\alpha}-Galactosidase$ activity. The enzyme characteristics of the selected preparation were shown to be pH 4.0-4.5 for optimum activity, pH 4-5 for optimum stability and $45^{\circ}C$ for optimum activity. Upon reaction on a synthetic substrate, $p-nitrophenyl-{\alpha}-D-galactoside$, Michaelis constant was 2.08 mM and maximum velocity was 435 micromoles of substrate/minute/g enzyme preparation. The enzyme was proved to be essential for SH group for its activity and capable of hydrolyzing raffinose, sucrose and $p-nitrophenyl-{\alpha}-D-galactoside$ almost completely. Thin-layer chromatographic analysis exhibited that the enzyme treatments of raffinose and stachyose were resulted to produce only monosaccharides in 2 hours of hydrolysis. It was, therefore, assumed that the flatulence factor in soybean foods can be easily removed by the use of enzymes showing ${\alpha}-Galactosidase$ activity.

  • PDF