• Title/Summary/Keyword: Allylic alcohol

Search Result 27, Processing Time 0.024 seconds

Catalytic Isomerization of Allyic Alcohols to Carbonyl Compounds with Rh(ClO$_4$)(CO)(PPh$_3)_2$ and [Rh(CO)(PPh$_3)_3$]ClO$_4$

  • Chin Chong Shik;Park Jeonghan;Kim Choongil
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.102-103
    • /
    • 1989
  • Four coordinated rhodium(Ⅰ) complexes, Rh($ClO_4$)(CO)$(PPh_3)_2$ and [$Rh(CO)(PPh_3)_3$]$ClO_4$(2) catalyze the iosmerization of allylic alcohols to the corresponding carbonyl compounds at room temperature under nitrogen. The isomerization is faster with 2 than with 1, which is understood in terms of relative ease of the last step of the catalytic cycle, the reductive elimination of enol. Relative rates of the isomerization with 1 and 2 for different allylic alcohols are also explained by the relative ease of the enol elimination step in part. The first step of the catalytic cycle, the complex formation of the allylic alcohol through the ${\pi}-system$ of the olefinic group of the allylic alcohol and the following step, formation of hydridoallyl complex also seem to affect the overall rate of the isomerization.

Stereoselective Synthesis of L-Deoxyaltronojirimycin from L-Serine

  • Rengasamy, Rajesh;Curtis-Long, Marcus J.;Ryu, Hyung-Won;Oh, Kyeong-Yeol;Park, Ki-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1531-1534
    • /
    • 2009
  • (2S,3R)-3-Hydroxy-2-(hydroxymethyl)-3,6-dihydro-2H-pyridine 8, an important precursor for the synthesis of polyhydroxylated piperidine azasugars, has been prepared from L-serine. Highly stereoselective nucleophilic addition to amino aldehyde 5 gave the corresponding allylic alcohol 6 which proceeded to give dihydro-2H-piridine 7a via a Grubbs II catalyzed RCM. Stereoselective H-bond directed epoxidation of allylic alcohol led to the oxiranyl alcohol 9 which was easily converted to L-deoxyaltronojirimycin by regioselective ring opening.

Allylic fluorination

  • Park, Oee-Sook;Son, Hoe-Joo;Lee, Woo-Young
    • Archives of Pharmacal Research
    • /
    • v.10 no.4
    • /
    • pp.239-244
    • /
    • 1987
  • An efficient and inexpensive method for the substitution of allylic hydroxyl group with fluoride, without allylic rearrangement, and elimination was developed. This method consists of treating an allylic alcohol with methylithium, followed by p-toluene sulfonyl fluoride, lithium fluoride and 12-Crown-4. This methodology was proved to be efficient by preparting geranyl fluoride, neryl fluoride, cinnamyl fluoride, E, E-farnesyl fluoride, retinyl fluoride and 4-fluoro-2-methyl-6-(ptolyl)-2-heptene.

  • PDF