• Title/Summary/Keyword: Allyl silica

Search Result 9, Processing Time 0.023 seconds

Study of Heat of Reaction Between Plasma Polymer Coated Silica Fillers and Biphenyl Epoxy Resin (플라즈마 코팅된 실리카와 에폭시 수지간의 반응성 연구)

  • Kim N. I.;Kang H. M.;Yoon T. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.96-99
    • /
    • 2004
  • Silica fillers were coated by plasma polymer coatings of 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allyl mercaptan and allyl alcohol using RF plasma (13.56 MHz). The coated fillers were then mixed with biphenyl epoxy, phenol novolac (curing agent) and/or triphenylphosphine (catalyst), and subjected to DSC analyses in order to elucidate the chemical reaction between functional moieties in the plasma polymer coatings and the epoxy resin. Only the samples with 1,3-diaminopropane and allylamine plasma polymer coated silica fillers showed heat of reaction peaks when they were mixed with biphenyl epoxy resin only, while these samples as well as the samples with 1,3-diaminopropane, allylamine and pyrrole plasma polymer coated silica fillers exhibited heat of reaction peaks when mixed with both biphenyl epoxy and phenol novolac (curing agent).

  • PDF

Kinetic Study on the Epoxidation of Allyl Chloride by t-Butyl Hydroperoxide over Mo/SiO2 Catalyst (Mo/SiO2 촉매상에서 t-Butyl hydroperoxide에 의한 염화알릴의 에폭시화반응에 관한 속도론적 연구)

  • Kim, Sung-Woo;Park, Dae-Won;Chung, Jong-Shik;Park, Dae-Chul
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.649-656
    • /
    • 1992
  • The synthesis of epichlorohydrin was carried out by the epoxidation of allyl chloride with tert-butyl hydroperoxide(TBHP) over silica supported molybdenum catalyst. Kinetic study was performed at $60-80^{\circ}C$ and 10 atm with the molar ratio of TBHP/Allyl chloride between 0.01 and 0.1 in a batch reactor. The epoxidation of allyl chloride was inhibited by tert-butyl alcohol and kinetic data could be represented by Michaelis-Meten type rate equation. The reaction mechanism could be explained by the combination of reversible adsorption of TBHP and tert-butyl alcohol accompanied by reaction of allyl chloride with TBHP adsorbed on $Mo/SiO_2$ catalyst.

  • PDF

Cycloaddition of Carbon Dioxide to Allyl Glycidyl Ether Using Silica-supported Ionic Liquid as a Catalyst (실리카에 고정화된 이온성액체를 촉매로 이용한 알릴글리시딜에테르와 이산화탄소의 부가반응)

  • Shim, Hye-Lim;Lee, Mi-Kyung;Yu, Jeong-In;Park, Dae-Won
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.166-170
    • /
    • 2008
  • In this study, imidazolium salt ionic liquid on amorphous silica was prepared and its catalytic performance in the cycloaddition of $CO_2$ with allyl glycidyl ether (AGE) to produce heterocyclic carbonate was investigated. The ionic liquid was generated on chloropropyl functionalized silica through the immobilization of imidazole. The prepared catalyst was characterized using a number of instrumental analysis including XRD, BET, $^{29}Si$ MAS-NMR and SEM. $^{29}Si$ MAS-NMR showed that the ionic liquid formed adduct with the chloropropyl groups attached to the silica surface. The immobilized ionic liquid showed very good catalytic activity for the cycloaddition of $CO_2$ with AGE, showing 55-61% of AGE conversion with over 85% of the carbonate selectivity at $80-120^{\circ}C$. Its AGE conversion and selectivity to the carbonate were even higher than the homogeneous analog, 1-n-butyl-3-methyl imidazolium bromide (BMImBr).

  • PDF

Titanized or Zirconized Porous Silica Modified with a Cellulose Derivative as New Chiral Stationary Phases

  • Seo, You-Jin;Kang, Gyoung-Won;Park, Seong-Tae;Moon, Myeong-Hee;Park, Jung-Hag;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.999-1004
    • /
    • 2007
  • Spherical porous silica supports modified with titanium or zirconium alkoxides were prepared, and allyl groups were chemically attached to the titanized or zirconized silica supports, and the product was cross-polymerized with a double bond containing cellulose derivative to yield new CSPs (chiral stationary phases). Magic angle spinning 13C solid state NMR and elemental analysis were used to characterize the CSPs. The performances of the chiral stationary phases were examined in comparison with a conventional chiral stationary phase. Spherical porous silica particles modified with 3,5-dimethylphenylcarbamate of cellulose were prepared and used as the conventional chiral stationary phase. Chromatographic data were collected for a few pairs of enantionmers in heptane/2-propanol mixed solvents of various compositions with the three chiral columns and the results were comparatively studied. The separation performance of the chrial phase made of the titanized silica was better than the others, and the separation performance of the chiral phase of the zirconized silica was comparable to that of the conventional chiral phase. The superiority of titanized silica over bare or zirconized silica in chiral separation seemed to be owing to the better yield of crosslinking (monitored by increase of carbon load) for titanized silica than for the others.

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

Preparation of Silane Dendrimer (Ⅱ) (나무가지꼴 실란 거대분자의 제법 (Ⅱ))

  • Kim, Chungkyun;Park, Eunmi;Kang, Eunju
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.10
    • /
    • pp.799-805
    • /
    • 1995
  • Silane dendrimer with 96 allylic end groups has been synthesized in excellent yield using repetitive alkenylation-hydrosilylation cycles. Each of the two steps provided the products in almost quantitative yields. After a simple chromotograpic purification (silica gel, chloroform), pure dendrimers were obtained and their purity was checked with 1H, 13C NMR spectroscopic method and elemental analysis.

  • PDF

Anticoagulation and Anticancer Constituents from Eugenia caryophyllata Thunb

  • Han, Kyung-Min;Kim, Dong-Hyun;Ahn, Eun-Mi;Lee, Youn-Hyung;Chung, In-Sik;Kim, Dae-Keun;Kwon, Byoung-Mog;Kim, Sung-Hoon;Baek, Nam-In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • From the EtOAc fraction of Eugenia caryophyllata, four compounds were isolated through activity-guided silica gel column chromatography, From the result of spectroscopic data including NMR, MS and IR, the chemical structures of the compounds were determined as 1-allyl-4-hydroxy-3-methoxybezene acetate (eugenol acetate, 1), 1-allyl-4-hydroxy-3-methoxybezene (eugenol, 2), $3{\beta}-hydroxyolean-12-en-28-oic$ acid (oleanolic acid, 3) and $2{\alpha}$, $3{\beta}-dihydroxyolean-12-en-28-oic$ acid (maslinic acid, 4). Compounds 3 and 4 were isolated for the first time from this plant. Also, compounds 1, 2 and 3 exhibited relatively high platelet aggregation inhibitory activity with the $IC_{50}$ values of 0.24, 0.09 and 0.07 mM, respectively. Compound 2 significantly prolonged activated partial thromboplastin time (aPTT) with the value of $124{\pm}11.2$ seconds as compared to the control with the value of $37.5{\pm}2.2$ seconds at the concentration of 50 ${\mu}g/ml$. Compounds 1 and 3 revealed inhibitory activity on farnesyl protein transferase (FPTase) with the $IC_{50}$ values of 0.49 and 0.24 mM and compounds 1 and 2 highly inhibited the growth of rat-H-ras cells with the $Gl_{50}$ values of 6.63 and 5.70 ${\mu}M$, respectively.

Preparation of Cucurbituril Anchored Silica Gel by Cross Polymerization and Its Chromatographic Applications

  • Cheong, Won-Jo;Go, Joung-Ho;Baik, Yoon-Suk;Kim, Sung-Soon;Nagarajan, Erumaipatty R;Selvapalam, Narayanan;Ko, Young-Ho;Kim, Ki-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1941-1945
    • /
    • 2008
  • A new chromatographic stationary phase has been prepared by cross polymerization between allylsilica and perallyloxycucurbit[6]uril and characterized by elemental analysis and FT-IR spectroscopy. The double endcapping has been proven to improve the separation efficiency of the cucurbituril-based stationary phase material. The first end-capping was carried out when allylsilica was made. The second end-capping was done as the final step of the whole process, and the use of a mixture of hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) as an end-capping reagent was found better than the use of only HMDS or TMCS. Our stationary phase has shown generally good results in separation of nonpolar and polar analytes. This phase showed even better separation performance than the commercial C18 phase for the case where hostguest chemistry was properly incorporated in solute retention.

Studies on the Fatty Acid Distribution in the Position of Triacylglycerols from the Seed of Pinus Koraiensis by Stereo-specific Analysis and $^{13}C-NMR$ Techniques (입본특이적(立本特異的) 방법(方法)과 $^{13}C-NMR$ 기법(技法)에 의한 잣기름의 트리아실 글리세롤의 구성지방산(構成脂肪酸)의 분포(分布)에 관한 연구(硏究))

  • Woo, Hyo-Kyeng;Kim, Seung-Jin;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.35-44
    • /
    • 1998
  • All the triacylglycerols including the molecular species having ${\Delta}^5$-unsaturated fatty acids from the seeds of Pinus Koraiensis, were split into a mixture of diacylglycerols by a Grignard reagent prepared with allyl bromide without arousing acyl chains of a glycerol moiety to migration, and were also easily partially hydrolyzed to diacylglycerols by pancreatic lipase. (S)-(+)-(1-naphthyl)ethyl urethane(NEU) derivatives of the diacylglycerol mixture derived from the triacylglycerols were fractionated into sn-1, 3-, sn-1, 2- and sn-2, 3-DG-NEU by silica-HPLC and the fatty acid composition of these fractions was analysed. $C_{18:1{\omega}9}$ is distributed evenly in the three positions of TG with $C_{18:2{\omega}6}$ mainly located in sn-2 position, while ${\Delta}^5$-unsaturated fatty acids such as ${\Delta}^{5.9}-C_{18:2}$, ${\Delta}^{5.9.12}-C_{18:3}$ and ${\Delta}^{5.11.14}-C_{20:3}$ are exclusively present in the sn-3 position. These results could be confirmed by $^{13}C$-NMR spectroscopy : the signals at $^{\delta}$173.231 ppm and $^{\delta}$172.811 ppm of the carbonyl carbon of acyl moieties indicate the presence of saturated acids and/or $C_{18:1{\omega}9}$ (oleic acid) in the ${\alpha}({\alpha}')$- or ${\beta}$- positions, and $C_{18:2{\omega}6}$ including $C_{18:1{\omega}9}$ in the ${\beta}$-position, respectively. In addition, the resonance at $^{\delta}$173.044 ppm suggested a location of ${\Delta}^5$-unsaturated fatty acid moiety in the ${\alpha}({\alpha}')$-position.